Skip to content

PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of the European Energy System

Notifications You must be signed in to change notification settings

LukasFrankenQ/pypsa-eur-sec

 
 

Repository files navigation

GitHub release (latest by date including pre-releases) Build Status Documentation Size Zenodo PyPSA-Eur Zenodo PyPSA-Eur-Sec Snakemake REUSE status

PyPSA-Eur: A Sector-Coupled Open Optimisation Model of the European Energy System

PyPSA-Eur is an open model dataset of the European energy system at the transmission network level that covers the full ENTSO-E area. The model is suitable both for operational studies and generation and transmission expansion planning studies. The continental scope and highly resolved spatial scale enables a proper description of the long-range smoothing effects for renewable power generation and their varying resource availability.

The model is described in the documentation and in the paper PyPSA-Eur: An Open Optimisation Model of the European Transmission System, 2018, arXiv:1806.01613. The model building routines are defined through a snakemake workflow. Please see the documentation for installation instructions and other useful information about the snakemake workflow. The model is designed to be imported into the open toolbox PyPSA.

WARNING: PyPSA-Eur is under active development and has several limitations which you should understand before using the model. The github repository issues collect known topics we are working on (please feel free to help or make suggestions). The documentation remains somewhat patchy. You can find showcases of the model's capabilities in the preprint Benefits of a Hydrogen Network in Europe, a paper in Joule with a description of the industry sector, or in a 2021 presentation at EMP-E. We cannot support this model if you choose to use it. We do not recommend to use the full resolution network model for simulations. At high granularity the assignment of loads and generators to the nearest network node may not be a correct assumption, depending on the topology of the underlying distribution grid, and local grid bottlenecks may cause unrealistic load-shedding or generator curtailment. We recommend to cluster the network to a couple of hundred nodes to remove these local inconsistencies. See the discussion in Section 3.4 "Model validation" of the paper.

PyPSA-Eur Grid Model

The dataset consists of:

  • A grid model based on a modified GridKit extraction of the ENTSO-E Transmission System Map. The grid model contains 6763 lines (alternating current lines at and above 220kV voltage level and all high voltage direct current lines) and 3642 substations.
  • The open power plant database powerplantmatching.
  • Electrical demand time series from the OPSD project.
  • Renewable time series based on ERA5 and SARAH, assembled using the atlite tool.
  • Geographical potentials for wind and solar generators based on land use (CORINE) and excluding nature reserves (Natura2000) are computed with the atlite library.

A sector-coupled extension adds demand and supply for the following sectors: transport, space and water heating, biomass, industry and industrial feedstocks, agriculture, forestry and fishing. This completes the energy system and includes all greenhouse gas emitters except waste management and land use.

This diagram gives an overview of the sectors and the links between them:

sector diagram

Each of these sectors is built up on the transmission network nodes from PyPSA-Eur:

network diagram

For computational reasons the model is usually clustered down to 50-200 nodes.

Already-built versions of the model can be found in the accompanying Zenodo repository.

Licence

The code in PyPSA-Eur is released as free software under the MIT License, see LICENSE.txt. However, different licenses and terms of use may apply to the various input data.

About

PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of the European Energy System

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 64.6%
  • Python 35.4%