This tool was developed while writing my Bachelor's Thesis in Computer Science. The tool is used for gene analysis using data from the Benito-Kwiecinski and Kutsche datasets. All the visualizations are based on the results of Granger Causality Test.
- Python 3.6 or higher
- Graphviz installed and added to PATH
On Windows:
- Download Python from the official website: Python Downloads.
- Run the installer and ensure you check the box that says "Add Python to PATH".
- Follow the installation steps.
On macOS:
- Download Python from the official website: Python Downloads.
- Run the installer and follow the installation steps.
- Alternatively, you can install Python using Homebrew:
brew install python
On Linux:
- Use the package manager for your distribution to install Python. For example, on Ubuntu:
sudo apt update sudo apt install python3 python3-venv python3-pip
On Windows:
- Download Graphviz from the official website: Graphviz Downloads.
- Run the installer and follow the installation steps.
- Add Graphviz to your system PATH (usually, the installer does this automatically).
On macOS:
- Install Graphviz using Homebrew:
brew install graphviz
On Linux:
- Use the package manager for your distribution to install Graphviz. For example, on Ubuntu:
sudo apt update sudo apt install graphviz
On Windows:
- Download Git from the official website: Git for Windows.
- Run the installer and follow the installation steps.
On macOS:
- Install Git using Homebrew:
brew install git
On Linux:
- Use the package manager for your distribution to install Git. For example, on Ubuntu:
sudo apt update sudo apt install git
-
Clone the Repository:
git clone https://github.com/LukasMadsenBrandt/gene_analysis_dashboard.git cd gene_analysis_dashboard
-
Create and Activate Virtual Environment:
On Unix-like systems (Linux/macOS):
python3 -m venv venv source venv/bin/activate
On Windows:
python -m venv venv venv\Scripts\activate
-
Install Dependencies:
pip install -r requirements.txt
-
Run the Application:
python app.py
gene_analysis_dashboard/
├── app.py
├── Data/
│ ├── Benito/
│ │ ├── Benito_Gorilla
│ │ ├── Benito_Human
│ │ ├── gene_id_to_gene_name.txt
│ │ ├── gene_names.txt
│ │ └── map_speciment_to_gene.csv
│ └── Kutsche/
│ ├── genes.txt
│ ├── gene_names.txt
│ ├── Kutsche_Counts.txt
│ └── search_genes.sh
├── gene_analysis_benito/
│ ├── config.py
│ ├── data_filtering.py
│ ├── data_preprocessing.py
│ ├── decorators.py
│ ├── granger_causality.py
├── gene_analysis_kutsche/
│ ├── config.py
│ ├── data_filtering.py
│ ├── data_preprocessing.py
│ ├── decorators.py
│ ├── granger_causality.py
- Select the dataset and summarization technique.
- Press "Send" to generate the graph.
- Use the community detection options and other controls to customize the graph.
Contributions are welcome. Please submit a pull request or open an issue to discuss the changes.
This project is licensed under the MIT License - see the LICENSE file for details.