forked from NVIDIA/DeepLearningExamples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
69a26f5
commit a860701
Showing
53 changed files
with
24,193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:21.02-py3 | ||
FROM ${FROM_IMAGE_NAME} | ||
RUN apt-get update && apt-get install -y pbzip2 | ||
|
||
RUN pip install --upgrade --no-cache-dir pip \ | ||
&& pip install --no-cache-dir tokenizers==0.8.0 dataclasses gitpython rouge-score pynvml==8.0.4 \ | ||
git+https://github.com/NVIDIA/dllogger pytorch-lightning==1.1.5 gdown | ||
|
||
RUN pip install tqdm --upgrade | ||
|
||
WORKDIR /workspace | ||
RUN git clone https://github.com/artmatsak/cnn-dailymail.git | ||
RUN git clone https://github.com/gcunhase/AMICorpusXML.git | ||
|
||
WORKDIR /workspace/bart | ||
|
||
COPY . . | ||
|
||
# Data from https://github.com/nlpyang/PreSumm |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from . import configuration | ||
from . import tokenization | ||
from . import modeling |
Empty file.
217 changes: 217 additions & 0 deletions
217
PyTorch/LanguageModeling/BART/bart/configuration/configuration_bart.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
# coding=utf-8 | ||
# Copyright 2020 The Fairseq Authors and The HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" BART configuration """ | ||
|
||
|
||
import logging | ||
|
||
from bart.configuration.configuration_utils import PretrainedConfig | ||
|
||
|
||
logger = logging.getLogger(__name__) | ||
|
||
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { | ||
"facebook/bart-base": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-base/config.json", | ||
"facebook/bart-large": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large/config.json", | ||
"facebook/bart-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-mnli/config.json", | ||
"facebook/bart-large-cnn": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-cnn/config.json", | ||
"facebook/bart-large-xsum": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-xsum/config.json", | ||
"facebook/mbart-large-en-ro": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/mbart-large-en-ro/config.json", | ||
"yjernite/bart_eli5": "https://s3.amazonaws.com/models.huggingface.co/bert/yjernite/bart_eli5/config.json", | ||
} | ||
|
||
BART_CONFIG_ARGS_DOC = r""" | ||
Args: | ||
vocab_size (:obj:`int`, optional, defaults to 50265): | ||
defines the different tokens that can be represented by `inputs_ids` passed to the forward method. | ||
d_model (:obj:`int`, optional, defaults to 1024): | ||
Dimensionality of the layers and the pooler layer. | ||
encoder_layers (:obj:`int`, optional, defaults to 12): | ||
Number of encoder layers, 16 for pegasus, 6 for bart-base and marian | ||
decoder_layers (:obj:`int`, optional, defaults to 12): | ||
Number of decoder layers, 16 for pegasus, 6 for bart-base and marian | ||
encoder_attention_heads (:obj:`int`, optional, defaults to 16): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
decoder_attention_heads (:obj:`int`, optional, defaults to 16): | ||
Number of attention heads for each attention layer in the Transformer decoder. | ||
decoder_ffn_dim (:obj:`int`, optional, defaults to 4096): | ||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder. | ||
encoder_ffn_dim (:obj:`int`, optional, defaults to 4096): | ||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder. | ||
activation_function (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): | ||
The non-linear activation function (function or string) in the encoder and pooler. | ||
If string, "gelu", "relu", "swish" and "gelu_new" are supported. | ||
dropout (:obj:`float`, optional, defaults to 0.1): | ||
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | ||
attention_dropout (:obj:`float`, optional, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
activation_dropout (:obj:`float`, optional, defaults to 0.0): | ||
The dropout ratio for activations inside the fully connected layer. | ||
classifier_dropout (:obj:`float`, optional, defaults to 0.0): | ||
The dropout ratio for classifier. | ||
max_position_embeddings (:obj:`int`, optional, defaults to 1024): | ||
The maximum sequence length that this model might ever be used with. | ||
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | ||
init_std (:obj:`float`, optional, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
add_bias_logits (:obj:`int`, optional, defaults to False): | ||
True for marian only. | ||
normalize_before (:obj:`bool`, optional, defaults to False): | ||
Call layernorm before attention ops. True for pegasus, mbart. False for bart. FIXME: marian? | ||
normalize_embedding (:obj:`bool`, optional, defaults to True): | ||
Call layernorm after embeddings. Only True for Bart. | ||
static_position_embeddings (:obj:`bool`, optional, defaults to False): | ||
Don't learn positional embeddings, use sinusoidal. True for marian, pegasus. | ||
add_final_layer_norm (:obj:`bool`, optional, defaults to False): | ||
Why not add another layernorm? | ||
scale_embedding (:obj:`bool`, optional, defaults to False): | ||
Scale embeddings by diving by sqrt(d_model). | ||
eos_token_id (:obj:`int`, optional, defaults to 2) | ||
End of stream token id. | ||
pad_token_id (:obj:`int`, optional, defaults to 1) | ||
Padding token id. | ||
bos_token_id (:obj:`int`, optional, defaults to 0) | ||
Beginning of stream token id. | ||
encoder_layerdrop: (:obj:`float`, optional, defaults to 0.0): | ||
Google "layerdrop arxiv", as its not explainable in one line. | ||
decoder_layerdrop: (:obj:`float`, optional, defaults to 0.0): | ||
Google "layerdrop arxiv", as its not explainable in one line. | ||
extra_pos_embeddings: (:obj:`int`, optional, defaults to 2): | ||
How many extra learned positional embeddings to use. Should be pad_token_id+1 for bart. | ||
num_labels: (:obj:`int`, optional, defaults to 2): | ||
for SequenceClassification | ||
is_encoder_decoder (:obj:`int`, optional, defaults to True): | ||
True | ||
force_bos_token_to_be_generated (:obj:`bool`, `optional`, defaults to :obj:`False`): | ||
Whether or not to force BOS token to be generated at step 1 (after ``decoder_start_token_id``), only true for `bart-large-cnn`. | ||
""" | ||
|
||
|
||
class BartConfig(PretrainedConfig): | ||
r""" | ||
Configuration class for Bart. Parameters are renamed from the fairseq implementation | ||
""" | ||
model_type = "bart" | ||
|
||
def __init__( | ||
self, | ||
activation_dropout=0.0, | ||
extra_pos_embeddings=2, # FIXME(@sshleifer): delete? | ||
activation_function="gelu", | ||
vocab_size=50265, | ||
d_model=1024, | ||
encoder_ffn_dim=4096, | ||
encoder_layers=12, | ||
encoder_attention_heads=16, | ||
decoder_ffn_dim=4096, | ||
decoder_layers=12, | ||
decoder_attention_heads=16, | ||
encoder_layerdrop=0.0, | ||
decoder_layerdrop=0.0, | ||
attention_dropout=0.0, | ||
dropout=0.1, | ||
max_position_embeddings=1024, | ||
init_std=0.02, | ||
classifier_dropout=0.0, | ||
num_labels=3, | ||
is_encoder_decoder=True, | ||
pad_token_id=1, | ||
bos_token_id=0, | ||
eos_token_id=2, | ||
normalize_before=False, | ||
add_final_layer_norm=False, | ||
scale_embedding=False, | ||
normalize_embedding=True, | ||
static_position_embeddings=False, | ||
add_bias_logits=False, | ||
force_bos_token_to_be_generated=False, | ||
attention_bias=True, | ||
**common_kwargs | ||
): | ||
r""" | ||
:class:`~transformers.BartConfig` is the configuration class for `BartModel`. | ||
Examples:: | ||
>>> from transformers import BartConfig, BartModel | ||
>>> config = BartConfig.from_pretrained('facebook/bart-large') | ||
>>> model = BartModel(config) | ||
""" | ||
if "hidden_size" in common_kwargs: | ||
raise ValueError("hidden size is called d_model") | ||
super().__init__( | ||
num_labels=num_labels, | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
is_encoder_decoder=is_encoder_decoder, | ||
**common_kwargs, | ||
) | ||
self.vocab_size = vocab_size | ||
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim | ||
self.encoder_ffn_dim = encoder_ffn_dim | ||
self.encoder_layers = self.num_hidden_layers = encoder_layers | ||
self.encoder_attention_heads = encoder_attention_heads | ||
self.encoder_layerdrop = encoder_layerdrop | ||
self.decoder_layerdrop = decoder_layerdrop | ||
self.decoder_ffn_dim = decoder_ffn_dim | ||
self.decoder_layers = decoder_layers | ||
self.decoder_attention_heads = decoder_attention_heads | ||
self.max_position_embeddings = max_position_embeddings | ||
self.init_std = init_std # Normal(0, this parameter) | ||
self.activation_function = activation_function | ||
|
||
# Params introduced for Mbart | ||
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | ||
self.normalize_embedding = normalize_embedding # True for mbart, False otherwise | ||
self.normalize_before = normalize_before # combo of fairseq's encoder_ and decoder_normalize_before | ||
self.add_final_layer_norm = add_final_layer_norm | ||
|
||
# Params introduced for Marian | ||
self.add_bias_logits = add_bias_logits | ||
self.static_position_embeddings = static_position_embeddings | ||
|
||
# 3 Types of Dropout | ||
self.attention_dropout = attention_dropout | ||
self.activation_dropout = activation_dropout | ||
self.dropout = dropout | ||
|
||
# Classifier stuff | ||
self.classif_dropout = classifier_dropout | ||
|
||
# pos embedding offset | ||
self.extra_pos_embeddings = self.pad_token_id + 1 | ||
|
||
self.force_bos_token_to_be_generated = force_bos_token_to_be_generated | ||
self.attention_bias = attention_bias | ||
|
||
@property | ||
def num_attention_heads(self) -> int: | ||
return self.encoder_attention_heads | ||
|
||
@property | ||
def hidden_size(self) -> int: | ||
return self.d_model | ||
|
||
def is_valid_mbart(self) -> bool: | ||
"""Is the configuration aligned with the MBART paper.""" | ||
if self.normalize_before and self.add_final_layer_norm and self.scale_embedding: | ||
return True | ||
if self.normalize_before or self.add_final_layer_norm or self.scale_embedding: | ||
logger.info("This configuration is a mixture of MBART and BART settings") | ||
return False |
114 changes: 114 additions & 0 deletions
114
PyTorch/LanguageModeling/BART/bart/configuration/configuration_t5.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# coding=utf-8 | ||
# Copyright 2010, The T5 Authors and HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" T5 model configuration """ | ||
|
||
from bart.configuration.configuration_utils import PretrainedConfig | ||
from utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
T5_PRETRAINED_CONFIG_ARCHIVE_MAP = { | ||
"t5-small": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-small-config.json", | ||
"t5-base": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-config.json", | ||
"t5-large": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-config.json", | ||
"t5-3b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-3b-config.json", | ||
"t5-11b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-11b-config.json", | ||
} | ||
|
||
|
||
class T5Config(PretrainedConfig): | ||
r""" | ||
:class:`~transformers.T5Config` is the configuration class to store the configuration of a | ||
`T5Model`. | ||
Arguments: | ||
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `T5Model`. | ||
d_model: Size of the encoder layers and the pooler layer. `d_model` can also accesed via the property `hidden_size`. | ||
num_layers: Number of hidden layers in the Transformer encoder. `num_layers` can also be accessed via the property `num_hidden_layers`. | ||
d_kv: Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // num_heads`. | ||
d_ff: Size of the intermediate feed forward layer in each `T5Block`. | ||
num_heads: Number of attention heads for each attention layer in | ||
the Transformer encoder. `num_heads` can also be accessed via the property `num_attention_heads`. | ||
intermediate_size: The size of the "intermediate" (i.e., feed-forward) | ||
layer in the Transformer encoder. | ||
hidden_act: The non-linear activation function (function or string) in the | ||
encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. | ||
hidden_dropout_prob: The dropout probabilitiy for all fully connected | ||
layers in the embeddings, encoder, and pooler. | ||
attention_probs_dropout_prob: The dropout ratio for the attention | ||
probabilities. | ||
n_positions: The maximum sequence length that this model might | ||
ever be used with. Typically set this to something large just in case | ||
(e.g., 512 or 1024 or 2048). `n_positions` can also be accessed via the property `max_position_embeddings`. | ||
type_vocab_size: The vocabulary size of the `token_type_ids` passed into | ||
`T5Model`. | ||
initializer_factor: A factor for initializing all weight matrices (should be kept to 1.0, used for initialization testing). | ||
layer_norm_eps: The epsilon used by LayerNorm. | ||
""" | ||
model_type = "t5" | ||
|
||
def __init__( | ||
self, | ||
vocab_size=32128, | ||
n_positions=512, | ||
d_model=512, | ||
d_kv=64, | ||
d_ff=2048, | ||
num_layers=6, | ||
num_heads=8, | ||
relative_attention_num_buckets=32, | ||
dropout_rate=0.1, | ||
layer_norm_epsilon=1e-6, | ||
initializer_factor=1.0, | ||
is_encoder_decoder=True, | ||
pad_token_id=0, | ||
eos_token_id=1, | ||
**kwargs | ||
): | ||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
eos_token_id=eos_token_id, | ||
is_encoder_decoder=is_encoder_decoder, | ||
**kwargs, | ||
) | ||
self.vocab_size = vocab_size | ||
self.n_positions = n_positions | ||
self.d_model = d_model | ||
self.d_kv = d_kv | ||
self.d_ff = d_ff | ||
self.num_layers = num_layers | ||
self.num_heads = num_heads | ||
self.relative_attention_num_buckets = relative_attention_num_buckets | ||
self.dropout_rate = dropout_rate | ||
self.layer_norm_epsilon = layer_norm_epsilon | ||
self.initializer_factor = initializer_factor | ||
|
||
@property | ||
def max_position_embeddings(self): | ||
return self.n_positions | ||
|
||
@property | ||
def hidden_size(self): | ||
return self.d_model | ||
|
||
@property | ||
def num_attention_heads(self): | ||
return self.num_heads | ||
|
||
@property | ||
def num_hidden_layers(self): | ||
return self.num_layers |
Oops, something went wrong.