Skip to content

Commit

Permalink
[BART/PyT] Initial release
Browse files Browse the repository at this point in the history
  • Loading branch information
nv-kkudrynski committed Aug 11, 2021
1 parent 69a26f5 commit a860701
Show file tree
Hide file tree
Showing 53 changed files with 24,193 additions and 0 deletions.
34 changes: 34 additions & 0 deletions PyTorch/LanguageModeling/BART/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:21.02-py3
FROM ${FROM_IMAGE_NAME}
RUN apt-get update && apt-get install -y pbzip2

RUN pip install --upgrade --no-cache-dir pip \
&& pip install --no-cache-dir tokenizers==0.8.0 dataclasses gitpython rouge-score pynvml==8.0.4 \
git+https://github.com/NVIDIA/dllogger pytorch-lightning==1.1.5 gdown

RUN pip install tqdm --upgrade

WORKDIR /workspace
RUN git clone https://github.com/artmatsak/cnn-dailymail.git
RUN git clone https://github.com/gcunhase/AMICorpusXML.git

WORKDIR /workspace/bart

COPY . .

# Data from https://github.com/nlpyang/PreSumm
569 changes: 569 additions & 0 deletions PyTorch/LanguageModeling/BART/README.md

Large diffs are not rendered by default.

3 changes: 3 additions & 0 deletions PyTorch/LanguageModeling/BART/bart/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from . import configuration
from . import tokenization
from . import modeling
Empty file.
217 changes: 217 additions & 0 deletions PyTorch/LanguageModeling/BART/bart/configuration/configuration_bart.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
# coding=utf-8
# Copyright 2020 The Fairseq Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BART configuration """


import logging

from bart.configuration.configuration_utils import PretrainedConfig


logger = logging.getLogger(__name__)

BART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/bart-base": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-base/config.json",
"facebook/bart-large": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large/config.json",
"facebook/bart-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-mnli/config.json",
"facebook/bart-large-cnn": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-cnn/config.json",
"facebook/bart-large-xsum": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-xsum/config.json",
"facebook/mbart-large-en-ro": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/mbart-large-en-ro/config.json",
"yjernite/bart_eli5": "https://s3.amazonaws.com/models.huggingface.co/bert/yjernite/bart_eli5/config.json",
}

BART_CONFIG_ARGS_DOC = r"""
Args:
vocab_size (:obj:`int`, optional, defaults to 50265):
defines the different tokens that can be represented by `inputs_ids` passed to the forward method.
d_model (:obj:`int`, optional, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (:obj:`int`, optional, defaults to 12):
Number of encoder layers, 16 for pegasus, 6 for bart-base and marian
decoder_layers (:obj:`int`, optional, defaults to 12):
Number of decoder layers, 16 for pegasus, 6 for bart-base and marian
encoder_attention_heads (:obj:`int`, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (:obj:`int`, optional, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (:obj:`int`, optional, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder.
encoder_ffn_dim (:obj:`int`, optional, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder.
activation_function (:obj:`str` or :obj:`function`, optional, defaults to "gelu"):
The non-linear activation function (function or string) in the encoder and pooler.
If string, "gelu", "relu", "swish" and "gelu_new" are supported.
dropout (:obj:`float`, optional, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, optional, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (:obj:`float`, optional, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (:obj:`float`, optional, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (:obj:`int`, optional, defaults to 1024):
The maximum sequence length that this model might ever be used with.
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, optional, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
add_bias_logits (:obj:`int`, optional, defaults to False):
True for marian only.
normalize_before (:obj:`bool`, optional, defaults to False):
Call layernorm before attention ops. True for pegasus, mbart. False for bart. FIXME: marian?
normalize_embedding (:obj:`bool`, optional, defaults to True):
Call layernorm after embeddings. Only True for Bart.
static_position_embeddings (:obj:`bool`, optional, defaults to False):
Don't learn positional embeddings, use sinusoidal. True for marian, pegasus.
add_final_layer_norm (:obj:`bool`, optional, defaults to False):
Why not add another layernorm?
scale_embedding (:obj:`bool`, optional, defaults to False):
Scale embeddings by diving by sqrt(d_model).
eos_token_id (:obj:`int`, optional, defaults to 2)
End of stream token id.
pad_token_id (:obj:`int`, optional, defaults to 1)
Padding token id.
bos_token_id (:obj:`int`, optional, defaults to 0)
Beginning of stream token id.
encoder_layerdrop: (:obj:`float`, optional, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
decoder_layerdrop: (:obj:`float`, optional, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
extra_pos_embeddings: (:obj:`int`, optional, defaults to 2):
How many extra learned positional embeddings to use. Should be pad_token_id+1 for bart.
num_labels: (:obj:`int`, optional, defaults to 2):
for SequenceClassification
is_encoder_decoder (:obj:`int`, optional, defaults to True):
True
force_bos_token_to_be_generated (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force BOS token to be generated at step 1 (after ``decoder_start_token_id``), only true for `bart-large-cnn`.
"""


class BartConfig(PretrainedConfig):
r"""
Configuration class for Bart. Parameters are renamed from the fairseq implementation
"""
model_type = "bart"

def __init__(
self,
activation_dropout=0.0,
extra_pos_embeddings=2, # FIXME(@sshleifer): delete?
activation_function="gelu",
vocab_size=50265,
d_model=1024,
encoder_ffn_dim=4096,
encoder_layers=12,
encoder_attention_heads=16,
decoder_ffn_dim=4096,
decoder_layers=12,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
attention_dropout=0.0,
dropout=0.1,
max_position_embeddings=1024,
init_std=0.02,
classifier_dropout=0.0,
num_labels=3,
is_encoder_decoder=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
normalize_before=False,
add_final_layer_norm=False,
scale_embedding=False,
normalize_embedding=True,
static_position_embeddings=False,
add_bias_logits=False,
force_bos_token_to_be_generated=False,
attention_bias=True,
**common_kwargs
):
r"""
:class:`~transformers.BartConfig` is the configuration class for `BartModel`.
Examples::
>>> from transformers import BartConfig, BartModel
>>> config = BartConfig.from_pretrained('facebook/bart-large')
>>> model = BartModel(config)
"""
if "hidden_size" in common_kwargs:
raise ValueError("hidden size is called d_model")
super().__init__(
num_labels=num_labels,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**common_kwargs,
)
self.vocab_size = vocab_size
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = self.num_hidden_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function

# Params introduced for Mbart
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.normalize_embedding = normalize_embedding # True for mbart, False otherwise
self.normalize_before = normalize_before # combo of fairseq's encoder_ and decoder_normalize_before
self.add_final_layer_norm = add_final_layer_norm

# Params introduced for Marian
self.add_bias_logits = add_bias_logits
self.static_position_embeddings = static_position_embeddings

# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout

# Classifier stuff
self.classif_dropout = classifier_dropout

# pos embedding offset
self.extra_pos_embeddings = self.pad_token_id + 1

self.force_bos_token_to_be_generated = force_bos_token_to_be_generated
self.attention_bias = attention_bias

@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads

@property
def hidden_size(self) -> int:
return self.d_model

def is_valid_mbart(self) -> bool:
"""Is the configuration aligned with the MBART paper."""
if self.normalize_before and self.add_final_layer_norm and self.scale_embedding:
return True
if self.normalize_before or self.add_final_layer_norm or self.scale_embedding:
logger.info("This configuration is a mixture of MBART and BART settings")
return False
114 changes: 114 additions & 0 deletions PyTorch/LanguageModeling/BART/bart/configuration/configuration_t5.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
# coding=utf-8
# Copyright 2010, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" T5 model configuration """

from bart.configuration.configuration_utils import PretrainedConfig
from utils import logging


logger = logging.get_logger(__name__)

T5_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"t5-small": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-small-config.json",
"t5-base": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-config.json",
"t5-large": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-config.json",
"t5-3b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-3b-config.json",
"t5-11b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-11b-config.json",
}


class T5Config(PretrainedConfig):
r"""
:class:`~transformers.T5Config` is the configuration class to store the configuration of a
`T5Model`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `T5Model`.
d_model: Size of the encoder layers and the pooler layer. `d_model` can also accesed via the property `hidden_size`.
num_layers: Number of hidden layers in the Transformer encoder. `num_layers` can also be accessed via the property `num_hidden_layers`.
d_kv: Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // num_heads`.
d_ff: Size of the intermediate feed forward layer in each `T5Block`.
num_heads: Number of attention heads for each attention layer in
the Transformer encoder. `num_heads` can also be accessed via the property `num_attention_heads`.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
n_positions: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048). `n_positions` can also be accessed via the property `max_position_embeddings`.
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`T5Model`.
initializer_factor: A factor for initializing all weight matrices (should be kept to 1.0, used for initialization testing).
layer_norm_eps: The epsilon used by LayerNorm.
"""
model_type = "t5"

def __init__(
self,
vocab_size=32128,
n_positions=512,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_heads=8,
relative_attention_num_buckets=32,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
is_encoder_decoder=True,
pad_token_id=0,
eos_token_id=1,
**kwargs
):
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
self.vocab_size = vocab_size
self.n_positions = n_positions
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor

@property
def max_position_embeddings(self):
return self.n_positions

@property
def hidden_size(self):
return self.d_model

@property
def num_attention_heads(self):
return self.num_heads

@property
def num_hidden_layers(self):
return self.num_layers
Loading

0 comments on commit a860701

Please sign in to comment.