-
Notifications
You must be signed in to change notification settings - Fork 12
Description
Hi HiTMaP team,
I really like this code, I am running it with your example data to get it ready for my project, and it is giving me the output of:
Error in summarize(., mean = mean(Score)) :
Input must be a hitmap_project object
after Ranking mz feature: 15445 unique candidates mz, 1200 aligned mz feature
I think the code may not be reading one of the input files.
Could you please help me out? Thank you so much!
Here is my full input:
preprocess = list(force_preprocess=TRUE,
use_preprocessRDS=FALSE,
smoothSignal=list(method = c("Disable", "gaussian", "sgolay", "ma")[1]),
reduceBaseline=list(method = c("Disable", "locmin", "median")[1]),
peakPick=list(method=c("diff", "sd", "mad", "quantile", "filter", "cwt")[3]),
peakAlign=list(tolerance=5, units="ppm", level=c("local","global")[1], method=c("Enable","Disable")[1]),
normalize=list(method=c("Disable","rms","tic","reference")[1], mz=NULL)
)
imaging_identification(
#==============Choose the imzml raw data file(s) to process make sure the fasta file in the same folder
datafile=paste0(wd,datafile),
threshold=0.005,
ppm=5,
FDR_cutoff = 0.05,
#==============specify the digestion enzyme specificity
Digestion_site="trypsin",
#==============specify the range of missed Cleavages
missedCleavages=0:1,
#==============Set the target fasta file
Fastadatabase="uniprot-bovin.fasta",
#==============Set the possible adducts and fixed modifications
adducts=c("M+H"),
Modifications=list(fixed=NULL,fixmod_position=NULL,variable=NULL,varmod_position=NULL),
#==============The decoy mode: could be one of the "adducts", "elements" or "isotope"
Decoy_mode = "isotope",
use_previous_candidates=F,
output_candidatelist=T,
#==============The pre-processing param
preprocess=preprocess,
#==============Set the parameters for image segmentation
spectra_segments_per_file=4,
Segmentation="spatialKMeans",
Smooth_range=1,
Virtual_segmentation=FALSE,
Virtual_segmentation_rankfile=NULL,
#==============Set the Score method for hi-resolution isotopic pattern matching
score_method="SQRTP",
peptide_ID_filter=2,
#==============Summarise the protein and peptide features across the project the result can be found at the summary folder
Protein_feature_summary=TRUE,
Peptide_feature_summary=TRUE,
Region_feature_summary=TRUE,
#==============The parameters for Cluster imaging. Specify the annotations of interest, the program will perform a case-insensitive search on the result file, extract the protein(s) of interest and plot them in the cluster imaging mode
plot_cluster_image_grid=FALSE,
ClusterID_colname="Protein",
componentID_colname="Peptide",
Protein_desc_of_interest=c("Crystallin","Actin"),
Rotate_IMG=NULL,
)
And here is my output from it:
12 Cores detected, 4 threads will be used for computing
1 files were selected and will be used for Searching
uniprot-bovin.fasta was selected as database. Candidates will be generated through Proteomics mode
Found enzyme: trypsin
Found rule: ""
Found customized rule: ""
Testing fasta sequances for degestion site: (KR)|((?<=W)K(?=P))|((?<=M)R(?=P))
Generated 37948 Proteins in total. Computing exact masses...
Generating peptide formula...
Generating peptide formula with adducts: M+H
Calculating peptide mz with adducts: M+H
Candidate list has been exported.
uniprot-bovin.fasta was selected as database
Spectrum intensity threshold: 0.50%
mz tolerance: 5 ppm Segmentation method: spatialKMeans
Manual segmentation def file: None
Bypass spectrum generation: FALSE
Found rotation info
Loading raw image data for statistical analysis: Bovin_lens.imzML
parsing imzML file: ‘C:\Users\tanji\OneDrive - Johns Hopkins\Documents\Summary_Error_Test\Bovinlens_Trypsin_FT\Bovin_lens.imzML’
detected 'processed' imzML
creating MSImagingExperiment
applying profile m/z-values to all spectra
using mass.range 700 to 4000
using resolution 5 ppm
binning intensity from mz 700 to 3999.9828 with relative resolution 5e-06
returning MSImagingExperiment
Preparing image data for statistical analysis: Bovin_lens.imzML
queued: height peak picking
processing: height peak picking
processing chunk 1/20 (131 items | 2.46 MB)
processing chunk 2/20 (131 items | 3.11 MB)
processing chunk 3/20 (131 items | 3.33 MB)
processing chunk 4/20 (131 items | 3.4 MB)
processing chunk 5/20 (131 items | 3.33 MB)
processing chunk 6/20 (131 items | 3.16 MB)
processing chunk 7/20 (130 items | 3.06 MB)
processing chunk 8/20 (131 items | 2.97 MB)
processing chunk 9/20 (131 items | 2.75 MB)
processing chunk 10/20 (131 items | 2.68 MB)
processing chunk 11/20 (131 items | 2.54 MB)
processing chunk 12/20 (131 items | 2.19 MB)
processing chunk 13/20 (131 items | 2.36 MB)
processing chunk 14/20 (130 items | 2.22 MB)
processing chunk 15/20 (131 items | 2.08 MB)
processing chunk 16/20 (131 items | 2.05 MB)
processing chunk 17/20 (131 items | 2.25 MB)
processing chunk 18/20 (131 items | 2.21 MB)
processing chunk 19/20 (131 items | 2.03 MB)
processing chunk 20/20 (131 items | 2.05 MB)
collecting 2618 results from 20 chunks
output spectra: intensity
Using image data: Bovin_lens.imzML
parsing imzML file: ‘C:\Users\tanji\OneDrive - Johns Hopkins\Documents\Summary_Error_Test\Bovinlens_Trypsin_FT\Bovin_lens.imzML’
detected 'processed' imzML
creating MSImagingExperiment
applying profile m/z-values to all spectra
using mass.range 700 to 4000
using resolution 5 ppm
binning intensity from mz 700 to 3999.9828 with relative resolution 5e-06
returning MSImagingExperiment
Segmentation in progress...
Performing forced peak alignment before segmentation...
preprocess$peakAlign$tolerance set as 5
detected ~881.6 peaks per spectrum
using bin ratio of 2 to create peak bins (per tolerance half-window)
using peak bins with relative resolution of 2.5e-06
binning peaks to create shared reference
processing 20 chunks (~130 items per chunk | ~929.5 KB per chunk)
|============================================================================================================================================| 100%
collecting 2618 results from 20 chunks
merging peak bins with relative centroid differences <= 5e-06
aligned to 23945 reference peaks with relative tolerance 5e-06 (5 ppm)
computing gaussian weights
using custom weights
fitting FastMap component 1
|====================================================================================| 100%
iteration 1: max pivot distance (2347, 1573) = 28060511
|====================================================================================| 100%
iteration 2: max pivot distance (1573, 800) = 28174693
|============================================================================================================================================| 100%
iteration 3: max pivot distance (800, 1573) = 29026404
projecting component 1 using pivots: 1573, 800
fitting FastMap component 2
|============================================================================================================================================| 100%
iteration 1: max pivot distance (2087, 1578) = 20459505
|============================================================================================================================================| 100%
iteration 2: max pivot distance (2087, 1578) = 20459505
projecting component 2 using pivots: 2087, 1578
fitting FastMap component 3
|============================================================================================================================================| 100%
iteration 1: max pivot distance (1200, 1467) = 16922397
|============================================================================================================================================| 100%
iteration 2: max pivot distance (2377, 13) = 18340724
|============================================================================================================================================| 100%
iteration 3: max pivot distance (1314, 1467) = 18623114
|============================================================================================================================================| 100%
iteration 4: max pivot distance (1314, 1467) = 18623114
projecting component 3 using pivots: 1314, 1467
fitting FastMap component 4
|============================================================================================================================================| 100%
iteration 1: max pivot distance (2499, 13) = 17863708
|============================================================================================================================================| 100%
iteration 2: max pivot distance (2499, 13) = 17863708
projecting component 4 using pivots: 2499, 13
returning FastMap projection
fitting k-means for k = 4
calculating cluster centers
processing 20 chunks (~130 items per chunk | ~1.86 MB per chunk)
|============================================================================================================================================| 100%
collecting 2618 results from 20 chunks
calculating spatial correlations with clusters
processing 20 chunks (~145 items per chunk | ~1.86 MB per chunk)
|============================================================================================================================================| 100%
collecting 2915 results from 20 chunks
returning spatial k-means
spatialKMeans finished: Bovin_lens
workflow successfully completed
Got Protein_feature_list from global environment.
PMFsearch Bovin_lens
region 4 Found.
region 1 Found.
region 2 Found.
region 3 Found.
IMS_analysis Bovin_lens region 4
preprocess$peakAlign$tolerance set as 5
detected ~1000.4 peaks per spectrum
using bin ratio of 2 to create peak bins (per tolerance half-window)
using peak bins with relative resolution of 2.5e-06
binning peaks to create shared reference
processing 20 chunks (~23 items per chunk | ~188.81 KB per chunk)
|============================================================================================================================================| 100%
collecting 469 results from 20 chunks
merging peak bins with relative centroid differences <= 5e-06
aligned to 16828 reference peaks with relative tolerance 5e-06 (5 ppm)
processing 20 chunks (~23 items per chunk | ~377.62 KB per chunk)
|============================================================================================================================================| 100%
collecting 469 results from 20 chunks
1250 mz features subjected to 1st PMF search
PMF 1st search...
Summarizing peptide information...
1st run returns 44958 peptide candidates
|============================================================================================================================================| 100%
|============================================================================================================================================| 100%
Ranking mz feature: 15445 unique candidates mz, 1200 aligned mz feature
Error in summarize(., mean = mean(Score)) :
Input must be a hitmap_project object
In addition: Warning message:
In .local(object, ...) : '.local' is deprecated.
Use 'subsetFeatures' instead.
See help("Deprecated")