Skip to content

MAiTlx/jittor-MAiTl-NeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

简介

基于JNeRF的降噪优化

环境安装

JNeRF environment requirements:

  • System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
  • Python version >= 3.7
  • CPU compiler (require at least one of the following)
    • g++ (>=5.4.0)
    • clang (>=8.0)
  • GPU compiler (optional)
    • nvcc (>=10.0 for g++ or >=10.2 for clang)
  • GPU library: cudnn-dev (recommend tar file installation, reference link)
  • GPU supporting:
    • sm arch >= sm_61 (GTX 10x0 / TITAN Xp and above)
    • to use fp16: sm arch >= sm_70 (TITAN V / V100 and above). JNeRF will automatically use original fp32 if the requirements are not meet.
    • to use FullyFusedMLP: sm arch >= sm_75 (RTX 20x0 and above). JNeRF will automatically use original MLPs if the requirements are not meet.

Step 1: Install the requirements

sudo apt-get install tcl-dev tk-dev python3-tk
git clone https://github.com/Jittor/JNeRF
cd JNeRF
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JNeRF

JNeRF is a benchmark toolkit and can be updated frequently, so installing in editable mode is recommended. Thus any modifications made to JNeRF will take effect without reinstallation.

cd python
python -m pip install -e .

After installation, you can import jnerf in python interpreter to check if it is successful or not.

数据集

数据集下载请参考Jrender仓库的download_competition_data.sh文件,或直接从链接下载(https://cloud.tsinghua.edu.cn/f/63016014a4ad410997f5/?dl=1

训练

python tools/run_net.py --config-file ./projects/ngp/configs/ngp_comp.py

通过模型参数生成渲染图片

执行 test.py

引用

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}
@article{mueller2022instant,
    author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller},
    title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding},
    journal = {ACM Trans. Graph.},
    issue_date = {July 2022},
    volume = {41},
    number = {4},
    month = jul,
    year = {2022},
    pages = {102:1--102:15},
    articleno = {102},
    numpages = {15},
    url = {https://doi.org/10.1145/3528223.3530127},
    doi = {10.1145/3528223.3530127},
    publisher = {ACM},
    address = {New York, NY, USA},
}
@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}

About

计图(jittor)挑战赛B榜

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages