Skip to content

Course Pattern Recognition, Using Different algorithms on Iris Dataset

Notifications You must be signed in to change notification settings

MOAboAli/PatternRecognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pattern Recognition

Using different classification algorithms on Iris Dataset (it was created in Dec 2019)

Dataset: Iris Dataset

Using python programing language.

The iris dataset contains the following data

•	50 samples of 3 different species of iris (150 samples total)
•	3 Classes :  "0": setosa,"1": versicolor,"2": virginica
•	4 Features , dataset is 150 * 4 Matrix
•	Features: sepal length, sepal width, petal length, petal width

image

Algorithms:

PCA :

Converting 4 dimensional to 2 dimensional

image

Converting 2 dimensional to 1 dimensional:

image

Red is class 0 , green is class 1 , blue is class 2

LDA : Converting 4 dimensional to 2 dimensional

image

Converting 2 dimensional to 1 dimensional:

image

Perceptron:

• First, reduce features to 2 dimensions using LDA: • Learning Rate=0.01 • Iteration =15 • Weights after training [ 77.90162435 433.32165847 35.24875973]

Multi-Layer Perceptron :

•	First, reduce features to 2 dimensions using LDA:
•	Iteration : 1000
•	Input Layer : 2 nodes
•	One hidden layer : 100 nodes
•	Out Layer: 3 nodes
•	Loss Rate per every 100:
        o	number of epoch 0 loss 1.058013916015625
        o	number of epoch 100 loss 0.7257269024848938
        o	number of epoch 200 loss 0.6850542426109314
        o	number of epoch 300 loss 0.6629276275634766
        o	number of epoch 400 loss 0.6485032439231873
        o	number of epoch 500 loss 0.6379558444023132
        o	number of epoch 600 loss 0.6296232342720032
        o	number of epoch 700 loss 0.6226478219032288
        o	number of epoch 800 loss 0.6165931224822998
        o	number of epoch 900 loss 0.6112104058265686

K-Means • First, reduce features to 2 dimensions using LDA: • K_Classes =3 • Output Centroid Center: o [-7.60759993 0.21513302] o [ 5.75542597 0.52437413] o [ 1.77251575 -0.76530064]

image

Test Cases :

image

image

About

Course Pattern Recognition, Using Different algorithms on Iris Dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages