Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH - Add parse_vNav_Motion entry point #14

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,11 @@
url='https://github.com/MRIMotionCorrection/parse_vNav_Motion',
author='Dylan Tisdall',
author_email='mtisdall@mail.med.upenn.edu',
entry_points={
'console_scripts': [
'parse_vNav_motion = vnav.parse_vNav_Motion:main'
]
},
license='MIT',
packages=['vnav'],
install_requires=['pydicom', 'numpy'])
86 changes: 59 additions & 27 deletions vnav/parse_vNav_Motion.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,31 +169,63 @@ def parseMotion(rotAndTrans, tr, radius):
return scores


def main():
parser = argparse.ArgumentParser(
description=
'Parse DICOM files from a vNav series and convert them into different motion scores.'
)

parser.add_argument(
'--tr',
required=True,
type=float,
help=
'Repetition Time (TR) of the parent sequence (i.e., the MPRAGE) expressed in seconds.'
)
parser.add_argument(
'--input',
nargs='+',
required=True,
type=os.path.abspath,
help=
'A list of DICOM files that make up the vNav series (in chronological order)'
)
parser.add_argument(
'--radius',
required=True,
type=float,
help=
'Assumed brain radius in millimeters for estimating rotation distance.'
)
output_type = parser.add_mutually_exclusive_group(required=True)
output_type.add_argument(
'--mean-rms',
action='store_true',
help='Print time-averaged root mean square (RMS) motion.')
output_type.add_argument('--mean-max',
action='store_true',
help='Print time-averaged max motion.')
output_type.add_argument(
'--rms-scores',
action='store_true',
help='Print root mean square (RMS) motion over time.')
output_type.add_argument('--max-scores',
action='store_true',
help='Print max motion over time.')

args = parser.parse_args()

scores = parseMotion(readRotAndTrans(args.input), args.tr, args.radius)

# Script output to STDOUT depending on "output_type"
if args.mean_rms:
print(scores['mean_rms'])
elif args.mean_max:
print(scores['mean_max'])
elif args.rms_scores:
print('\n'.join(map(str, scores['rms_scores'])))
elif args.max_scores:
print('\n'.join(map(str, scores['max_scores'])))

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parse DICOM files from a vNav series and convert them into different motion scores.')

parser.add_argument('--tr', required=True, type=float,
help='Repetition Time (TR) of the parent sequence (i.e., the MPRAGE) expressed in seconds.')
parser.add_argument('--input', nargs='+', required=True, type=os.path.abspath,
help='A list of DICOM files that make up the vNav series (in chronological order)')
parser.add_argument('--radius', required=True, type=float,
help='Assumed brain radius in millimeters for estimating rotation distance.')
output_type = parser.add_mutually_exclusive_group(required=True)
output_type.add_argument('--mean-rms', action='store_true', help='Print time-averaged root mean square (RMS) motion.')
output_type.add_argument('--mean-max', action='store_true', help='Print time-averaged max motion.')
output_type.add_argument('--rms-scores', action='store_true', help='Print root mean square (RMS) motion over time.')
output_type.add_argument('--max-scores', action='store_true', help='Print max motion over time.')

args = parser.parse_args()

scores = parseMotion(readRotAndTrans(args.input), args.tr, args.radius)

# Script output to STDOUT depending on "output_type"
if args.mean_rms:
print(scores['mean_rms'])
elif args.mean_max:
print(scores['mean_max'])
elif args.rms_scores:
print('\n'.join(map(str, scores['rms_scores'])))
elif args.max_scores:
print('\n'.join(map(str, scores['max_scores'])))
main()