Skip to content

Magalame/fastest-matrices

Repository files navigation

fastest-matrices

This project benchmarks the following libraries:

To run:

(allocation) stack build :bench-alloc && stack exec bench-alloc

(runtime) stack build :bench-runtime && stack exec bench-runtime

Results

Runtime

Matrix-matrix multiplication

Library n = 10 n = 50 n = 100
DLA 2.65 us 289.0 us 2.24 ms
Hmatrix 1.32 us 55.8 us 292.0 us
NumHask 714.0 us 63.5 ms 593.0 ms
Massiv 12.0 us 205.0 us 1.52 ms
Massiv (Par) 76.1 us 220.0 us 866.0 us
Matrix 12.6 us 1.1 ms 8.44 ms
Naive C 51 us 323 us 4.78 ms

Repeated matrix-matrix multiplication

Library n = 10 n = 50 n = 100
DLA 8.25 us 852.0 us 6.92 ms
Hmatrix 5.41 us 170.0 us 889.0 us
NumHask 1.46 ms 152.0 ms 1.42 s
Massiv 38.9 us 629.0 us 4.48 ms
Massiv (Par) 358.0 us 816.0 us 2.8 ms

Matrix-vector multiplication

Library n = 10 n = 50 n = 100
DLA 302.0 ns 4.12 us 16.1 us
Hmatrix 706.0 ns 2.27 us 11.1 us

QR factorization

Library n = 10 n = 50 n = 100
DLA 3.32 us 233.0 us 1.7 ms
Hmatrix 94.0 us 6.62 ms 60.3 ms

Transpose

Library n = 10 n = 50 n = 100
DLA 330.0 ns 8.46 us 25.9 us
Hmatrix 24.9 ns 24.4 ns 17.6 ns
NumHask 309.0 ns 7.29 us 28.1 us
Massiv 7.29 us 35.7 us 122.0 us
Matrix 4.58 us 130.0 us 699.0 us

Norm

Library n = 10 n = 50 n = 100
DLA 189.0 ns 4.15 us 16.8 us
Hmatrix 285.0 ns 1.15 us 4.32 us
NumHask 40.3 us 1.79 ms 9.72 ms
Massiv 128.0 ns 3.3 us 13.0 us
Naive C 350 ns 12.65 us 40.96 μs

Row

Library n = 10 n = 50 n = 100
DLA 26.4 ns 19.5 ns 19.5 ns
Hmatrix 1.43 us 1.63 us 1.7 us
NumHask 39.4 ns 170.0 ns 305.0 ns
Massiv 3.97 us 5.08 us 4.74 us
Matrix 40.9 ns 167.0 ns 310.0 ns

Column

Library n = 10 n = 50 n = 100
DLA 61.0 ns 279.0 ns 295.0 ns
Hmatrix 1.43 us 1.7 us 1.84 us
NumHask 221.0 ns 1.04 us 2.38 us
Massiv 4.63 us 5.04 us 5.04 us
Matrix 350.0 ns 1.59 us 3.09 us

Identity

Library n = 10 n = 50 n = 100
DLA 157.0 ns 4.75 us 11.2 us
Hmatrix 2.31 us 34.5 us 132.0 us
Matrix 2.94 us 65.9 us 492.0 us

Diagonal

Library n = 10 n = 50 n = 100
DLA 124.0 ns 5.04 us 11.2 us
Hmatrix 2.15 us 33.7 us 132.0 us

Allocation

Matrix-matrix multiplication

Library n = 10 n = 50 n = 100
DLA 976 20,176 80,176
hmatrix 904 20,936 80,936
NumHask 1,691,432 179,093,816 1,400,273,872
Massiv 5,816 140,216 560,216
Matrix 18,160 392,288 1,544,056

QR factorization

Library n = 10 n = 50 n = 100
DLA 1,848 40,248 160,248
hmatrix 201,192 9,074,048 67,457,120

Transpose

Library n = 10 n = 50 n = 100
DLA 880 20,080 80,080
hmatrix 64 64 64
NumHask 0 0 0
Massiv 872 20,072 80,072
Matrix 9,840 239,952 959,664

Norm

Library n = 10 n = 50 n = 100
DLA 16 16 16
hmatrix 232 232 232
NumHask 146,800 2,919,552 11,641,752
Massiv 16 16 16

Row

Library n = 10 n = 50 n = 100
DLA 64 64 64
hmatrix 2,128 2,128 2,128
NumHask 256 256 256
Massiv 144 464 864
Matrix 896 20,112 80,168

Column

Library n = 10 n = 50 n = 100
DLA 160 480 880
hmatrix 2,128 2,128 2,128
NumHask 800 2,720 5,120
Matrix 1,648 23,744 87,400

Identity

Library n = 10 n = 50 n = 100
DLA 1,008 20,528 80,928
hmatrix 3,208 66,440 252,440
Matrix 5,752 139,848 559,504

Relevant details:

  • the implementations of the "naive C" parts can be found in /naive. They were compiled with -O3
  • the massiv benchmarks use the Primitive representation, which seems to be the fastest among what massiv offers
  • the benchmarked functions from DLA are taken from the Fast module when available
  • the norm function is called on n*n vectors
  • instead of relying on hackage, the project's dependencies fetch the libraries directly from github (see stack.yaml).

Formely included:

  • bed-and-breakfast (abandoned because too slow)
  • matrices (abandoned because too slow, also see kaizhang/matrices#8)

TODO:

  • have a cleaner/more abstract interface for the benches

About

Benchmark of the main linear algebra libraries in Haskell

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published