Skip to content

MaginnGroup/CSP-LD-MD-Paper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Electronic Supporting File Repository

Authors: G. B. Correa, S. Konstantinopoulos, B. I. Tan, Y. Zhang, F. W. Tavares, C. S. Adjiman, E. J. Maginn

This repository contains supporting files for the article 'Assessing Polymorph Stability and Phase Transitions at Finite Temperature: Integrating Crystal Structure Prediction, Lattice Dynamics, and Molecular Dynamics' (DOI: [INSERT LATER]).

In this work, we describe a workflow to efficiently assess the phase behaviour of organic molecular crystals at finite temperature. The methodology combines zeroth-order Crystal Structure Prediction (CSP), harmonic approximation lattice dynamics (HA-LD), and molecular dynamics based on the pseudo-supercritical path (PSCP) method.

The associated input (and output) files for each of these stages are compiled in this repository and described below.

CSP

Zeroth-order CSP is performed to generate potentially observeable crystal structures. This entails two steps: (1) a global search using CrystalPredictor [1-5], followed by (2) a refinement using CrystalOptimizer [6].

For each step, the following inputs/outputs have been provided:

1_Global_Search

Input Files

  1. input.in: Main CrystalPredictor input file
  2. potential.in: Repulsion-dispersion (rd) parameter file
  3. rigid_lam_intra: LAM file with gas-phase minimized geometry and HLYGAt atomic-charges. The target molecule is treated as rigid at this step, so no additional LAMs were generated.

Output Files

These outputs correspond to the clustered global search landscape shown in Figure 4a of the article.

  1. N/N.res: Optimized crystal structure corresponding to cluster N, in SHELX format
  2. N/Cluster_details: Corresponding lattice energy and density for cluster N
  3. All_Energy_Density_CrystPred.dat: Summary of lattice energies and densities for entire landscape

2_Refinement

Input Files

  1. CrystOpt.input: Main CrystalOptimizer input file
  2. bondlengths: Standard bond lengths file
  3. dmarel.axis: DMACRYS [7] molecular axis file
  4. pote.dat: Repulsion-dispersion (rd) parameter file
  5. mol.input: Molecular definition file
  6. dmaSCF_2: Input settings for the GDMA program [8,9]
  7. structures.res: A target crystal structure in SHELX format should be provided to the program as well (not given here)

Notes on CrystalOptimizer

  1. In CrystOpt.input and mol.input files, "PATH" should be replaced by local paths
  2. CrystalOptimizer has external dependecies on:
  • DMACRYS [7]
  • GDMA [8,9]

Output Files

These outputs correspond to the clustered refinement landscape shown in Figure 4b of the article.

  1. N/N.res: Optimized crystal structure corresponding to cluster N, in SHELX format
  2. N/summary_CrystalOptimizer.out: Corresponding lattice energy and density for cluster N
  3. All_Energy_Density_CrystOpt.dat: Summary of lattice energies and densities for entire landscape

HA-LD

Lattice dynamics with the harmonic approximation is performed using the CrystalDynamics code [10,11]. This acts as a finite temperature prescreening.

The following inputs/outputs have been provided:

Input Files

  1. vibrations.in: Main CrystalDynamics input file
  2. dmaSCF_2: Input settings for the GDMA program [8,9]
  3. structures.res: A target crystal structure in SHELX format should be provided to the program as well. In this case, these correspond to index 1-100 from the CSP refinement step.

Output Files

These outputs correspond to the 100 structures subject to HA-LD in Figure 5 of the article.

  1. N/summary_CrystalDynamics.out: Relative free energy, with respect to cluster 1, for cluster N between 0-400 K

MD-PSCP

Molecular dynamics based on the PSCP method [12,13] is employed as a final assessment of the finite temperature phase behavior. Each folder contains simulation data for multiple polymorphs (cubic, mono, index-3, index-9, index-13).

The following folders have been provided:

1_NPT_equilibration

Equilibrate solid and liquid phases at target pressure and temperature (NPT ensemble).

Input Files

  1. box.lmp: Starting configuration and molecular topology (LAMMPS format).
  2. in.solid: LAMMPS input script.

Output Files

  1. _output.out: LAMMPS outputs for each temperature.

2_Gaussian_Potential_Fit

Fit Gaussian potential for intermediate restrained states.

Input Files

  1. fit.py, positions.py, probability.py: Python scripts for potential fitting.
  2. data.step0.initial: Starting configuration and molecular topology (LAMMPS format).
  3. in.gauss_wells: LAMMPS input script.

Output Files

  1. positions_.txt: Equilibrium coordinates of atom types.
  2. dados_dr0_P.txt: Probability distribution used to fit the parameter k of the Gaussian potential.

3_S->DWF

Thermodynamic transformation from the fully interacting solid (S) to the dense weak fluid (DWF).

Input Files

  1. run.py: Python script to automate the MD runs.
  2. data.step1.initial, data.out: Starting configuration and molecular topology (LAMMPS format).
  3. in.step1_model: LAMMPS input script.
  4. method_MBAR.py: Python script used to compute free energy differences using MBAR.

Output Files

  1. _output.out: Output files from MD runs for different λ windows.
  2. figure_MBAR_total.png: Visualization of the MBAR integration for this step.

4_DWF->WF

Thermodynamic transformation from the dense weak fluid (DWF) to the weak fluid (WF).

Input Files

  1. coordenador.py: Python script to automate the MD runs.
  2. data.initial, data2.out: Starting configuration and molecular topology (LAMMPS format).
  3. in.step2.1, in.step2.2, in.step2.pos: LAMMPS input scripts.
  4. method_MBAR.py: Python script used to compute free energy differences using MBAR.

Output Files

  1. output.out: Output files from MD runs for different volume windows.
  2. figure_MBAR_total.png: Visualization of the MBAR integration for this step.

5_WF->L

Thermodynamic transformation from the weak fluid (WF) to the fully interacting liquid (L).

Input Files

  1. run.py: Python script to automate the MD runs.
  2. data.step3.initial: Starting configuration and molecular topology (LAMMPS format).
  3. in.step3_model: LAMMPS input script.
  4. method_MBAR.py: Python script used to compute free energy differences using MBAR.

Output Files

  1. _output.out: Output files from MD runs for different λ windows.
  2. figure_MBAR_total.png: Visualization of the MBAR integration for this step.

6_Phase_Transitions

Final stage of the MD-PSCP workflow computes the overall free energy differences between pairs of polymorphs (solid–solid transitions) and between polymorphs and the liquid phase (solid–liquid transitions), as a function of temperature. Each folder represents a specific phase transition (e.g., cubic->index-3, index-3->liquid).

Input Files

  1. method_MBAR.py: Python script used to compute free energy differences using MBAR.

Output Files

  1. data_T_deltaGp.txt: Temperature-dependent gibbs free energy difference.
  2. data_T_deltaHp.txt: Temperature-dependent enthalpy difference.
  3. data_T_TdeltaSp.txt: Temperature-dependent entropic contribution.
  4. data_T_rho.txt: Temperature-dependent density profile.
  5. figura_mbarX.png: Visual summaries.

References

[1] Karamertzanis, P. G.; Pantelides, C. C. Ab initio crystal structure prediction—I. Rigid molecules. Journal of Computational Chemistry 2005, 26, 304-324, DOI: https://doi.org/10.1002/jcc.20165.

[2] Karamertzanis, P. G.; Pantelides, C. C. Ab initio crystal structure prediction. II. Flexible molecules. Molecular Physics 2007, 105, 273-291, DOI: 10.1080/00268970601143317.

[3] Habgood, M.; Sugden, I. J.; Kazantsev, A. V.; Adjiman, C. S.; Pantelides, C. C. Efficient Handling of Molecular Flexibility in Ab Initio Generation of Crystal Structures. Journal of Chemical Theory and Computation 2015, 11, 1957-1969, DOI: 10.1021/ct500621v.

[4] Sugden, I.; Adjiman, C. S.; Pantelides, C. C. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. I. Adaptive local approximate models. Acta Crystallographica Section B 2016, 72, 864-874, DOI: 10.1107/S2052520616015122.

[5] Sugden, I. J.; Adjiman, C. S.; Pantelides, C. C. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. II. Smoothed intramolecular potentials. Acta Crystallographica Section B 2019, 75, 423-433, DOI: 10.1107/S2052520619005778.

[6] Kazantsev, A. V.; Karamertzanis, P. G.; Adjiman, C. S.; Pantelides, C. C. Efficient Handling of Molecular Flexibility in Lattice Energy Minimization of Organic Crystals. Journal of Chemical Theory and Computation 2011, 7, 1998–2016, DOI: 10.1021/ct100597e.

[7] Price, S. L.; Leslie, M.; Welch, G. W. A.; Habgood, M.; Price, L. S.; Karamertzanis, P. G.; Day, G. M. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys. Chem. Chem. Phys. 2010, 12, 8478-8490, DOI: 10.1039/C004164E.

[8] Stone, A. J.; Alderton, M. Distributed multipole analysis Methods and applications. Molecular Physics 2002, 100, 221-233, DOI: 10.1080/00268970110089432.

[9] Stone, A. J. Distributed Multipole Analysis: Stability for Large Basis Sets. Journal of Chemical Theory and Computation 2005, 1, 1128-1132, DOI: 10.1021/ct050190+.

[10] Vasileiadis, M. Calculation of the free energy of crystalline solids. Ph.D. thesis, Imperial College London, 2013.

[11] Konstantinopoulos, S. Free Energy calculations for Crystal Structure Prediction studies. Ph.D. thesis, Imperial College London, 2023.

[12] Eike, D. M.; Brennecke, J. F.; Maginn, E. J. Toward a robust and general molecular simulation method for computing solid-liquid coexistence. The Journal of chemical physics 2005, 122, 014115, DOI: 10.1063/1.1823371.

[13] Eike, D. M.; Maginn, E. J. Atomistic simulation of solid-liquid coexistence for molecular systems: Application to triazole and benzene. The Journal of chemical physics 2006, 124, 164503, DOI: 10.1063/1.2188400.

[14] Correa, G. B.; Zhang, Y.; Abreu, C. R. A.; Tavares, F. W.; Maginn, E. J. Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid-liquid coexistence. J. Chem. Phys. 2023, 159, 104105, DOI: 10.1063/5.0163564.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •