Skip to content

Modular and extensible framework for Arabic Visual Question Answering (VQA) using state-of-the-art pretrained models for image captioning and question answering.

License

Notifications You must be signed in to change notification settings

Mahmood-Anaam/arabic-visual-question-answering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Arabic Visual Question Answering

Open in Colab Open in Colab

VQA Architecture

VQA Examples

Overview

Arabic Visual Question Answering (aravqa) is a modular and extensible framework designed for answering open-ended questions about images in Arabic. It combines multiple state-of-the-art pretrained models for image captioning, language processing, and evaluation metrics, offering a seamless pipeline to generate insights and conduct experiments.

Key Features:

  • Modularity: Plug-and-play architecture for adding and customizing models.
  • Arabic Support: Designed to handle Arabic datasets and language processing tasks.
  • Flexible Configuration: Supports various captioning models, caption selection strategies, and evaluation metrics.
  • Experimentation-Friendly: Provides a robust pipeline for experiments, including ablation studies and performance evaluation.

Installation

Option 1: Install via pip

pip install git+https://github.com/Mahmood-Anaam/arabic-visual-question-answering.git --quiet

Option 2: Clone Repository and Install in Editable Mode

git clone https://github.com/Mahmood-Anaam/arabic-visual-question-answering.git
cd arabic-visual-question-answering
pip install -e .

Option 3: Use Conda Environment

git clone https://github.com/Mahmood-Anaam/arabic-visual-question-answering.git
cd arabic-visual-question-answering
conda env create -f environment.yml
conda activate aravqa
pip install -e .

Architecture

The aravqa framework is structured into multiple reusable modules, allowing customization and extensibility:

  • Core: Contains shared utilities and configurations.

  • Datasets: Manages dataset loading, processing, and preparation.

  • Modules: Implements various models for captioning and question answering.

Quick Start

# Import necessary modules
from aravqa.core.config import Config
from datasets import load_dataset
from aravqa.datasets.utils import prepare_dataset, compute_similarity_captions, compute_bleu_score
from aravqa.datasets import OKVQADataset, OKVQADataLoader
from aravqa.modules.captioning import BiTCaptioner, VioletCaptioner
from aravqa.modules.question_answering import GeminiAnswerer
from aravqa.modules.evaluation import BLEUEvaluator, AccuracyEvaluator
import pandas as pd
import textwrap

# Initialize configuration
config = Config()
config.API_KEY = "your_google_generative_ai_api_key"
config.MODEL_NAME = "models/gemini-1.5-flash"
config.GENERATION_CONFIG = {
    "temperature": 0.0,
    "top_p": 0.95,
    "top_k": 40,
    "max_output_tokens": 20,
    "response_mime_type": "text/plain",
}
config.SYSTEM_INSTRUCTION = textwrap.dedent("""
    You are a highly capable language model specialized in answering questions based on provided image captions.
    Your task is to analyze the captions and generate accurate, concise answers in the same language as the question.
    Ensure your response is relevant, clear, and avoids unnecessary details.
""").strip()

config.PROMPT_TEMPLATE = textwrap.dedent("""
    Analyze the following image captions and answer the given question in the same language:
    Captions: {context}
    Question: {question}
    Answer concisely:
""").strip()

# Load datasets
bds = load_dataset(config.BDS_PATH, split=config.SPLIT)
vds = load_dataset(config.VDS_PATH, split=config.SPLIT)

# Prepare datasets
BDS = prepare_dataset(bds, language=config.LANGUAGE)
VDS = prepare_dataset(vds, language=config.LANGUAGE)

# Compute similarities for captions
BDS = compute_similarity_captions(BDS, question_similarity_scorer=compute_bleu_score, answer_similarity_scorer=compute_bleu_score)
VDS = compute_similarity_captions(VDS, question_similarity_scorer=compute_bleu_score, answer_similarity_scorer=compute_bleu_score)

# Combine datasets
dataset = OKVQADataset(BDS, VDS)

# Initialize DataLoader
dataloader = OKVQADataLoader(dataset, config).get_dataloader()

# Initialize LLM Model
llm = GeminiAnswerer(config)

# Generate answers
outputs = llm.generate_from_dataloader(dataloader)
outputs_df = pd.DataFrame.from_dict(outputs)

# Evaluate results
bleu_evaluator = BLEUEvaluator(max_order=2)
accuracy_evaluator = AccuracyEvaluator()

bleu_results = bleu_evaluator.evaluate(predictions=outputs["predictions"], references=outputs["answers"])
accuracy_results = accuracy_evaluator.evaluate(predictions=outputs["predictions"], references=outputs["answers"])

# Display results
print("BLEU Results:", bleu_results)
print("Accuracy Results:", accuracy_results)

Citation

If you use aravqa in your research, please cite the repository:

@misc{aravqa,
  author = {Mahmood Anaam},
  title = {Arabic Visual Question Answering (aravqa)},
  year = {2025},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/Mahmood-Anaam/arabic-visual-question-answering}},
}

About

Modular and extensible framework for Arabic Visual Question Answering (VQA) using state-of-the-art pretrained models for image captioning and question answering.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published