-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_models.py
88 lines (76 loc) · 3.4 KB
/
average_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import copy
import torch
def create_mean_model_parameters(models:list):
if len(models)==1:
return models[0]
else:
########IMPORTANT#################
#use best model for optimizer settings
new_model = copy.deepcopy(models[0])
parameter_keys = list(new_model.get_parameters()["policy"].keys())
new_parameters = new_model.get_parameters()
for k in parameter_keys:
p_list = [m.get_parameters()["policy"][k] for m in models]
new_parameters["policy"][k] = torch.mean(torch.stack(p_list,dim=-1),dim=-1)
# print("stop")
new_model.set_parameters(new_parameters)
return new_model
def create_weighted_mean_model_parameters(models:list,weights:list):
if len(models)==1:
return models[0]
else:
########IMPORTANT#################
#use best model for optimizer settings
_,idx = torch.topk(torch.Tensor(weights),1)
new_model = copy.deepcopy(models[idx.item()])
parameter_keys = list(new_model.get_parameters()["policy"].keys())
new_parameters = new_model.get_parameters()
for k in parameter_keys:
p_list = [m.get_parameters()["policy"][k] for m in models]
p_list_weighted = [w*p for w,p in zip(weights,p_list)]
new_parameters["policy"][k] = torch.sum(torch.stack(p_list_weighted,dim=-1),dim=-1)
# print("stop")
new_model.set_parameters(new_parameters)
#test to check that models actually are different
#test = [[torch.sum(torch.abs(models[i].get_parameters()["policy"][p])).item() for i in range(5)] for p in parameter_keys]
return new_model
def create_median_model_parameters(models:list):
if len(models)==1:
return models[0]
else:
########IMPORTANT#################
#use best model for optimizer settings
new_model = copy.deepcopy(models[0])
parameter_keys = list(new_model.get_parameters()["policy"].keys())
new_parameters = new_model.get_parameters()
for k in parameter_keys:
p_list = [m.get_parameters()["policy"][k] for m in models]
new_parameters["policy"][k] = torch.median(torch.stack(p_list,dim=-1),dim=-1)[0]
# print("stop")
new_model.set_parameters(new_parameters)
return new_model
def create_top_n_mean_model_parameters(models:list,performance,n):
performance = torch.Tensor(performance)
_,idx = torch.topk(performance,n)
new_model_list = [models[i] for i in list(idx)]
model_average = create_mean_model_parameters(new_model_list)
return model_average
def create_softmax_model_parameters(models:list,performance):
performance = torch.Tensor(performance)
weights = torch.nn.functional.softmax(performance)
print(weights)
model_average = create_weighted_mean_model_parameters(models,weights)
return model_average
def create_top_model(models:list,performance:list):
if len(models)<2:
raise NotImplementedError
performance = torch.Tensor(performance)
_,idx = torch.topk(performance,1)
new_model = models[idx.item()]
return new_model
def create_top_n_median_model_parameters(models:list,performance,n):
performance = torch.Tensor(performance)
_,idx = torch.topk(performance,n)
new_model_list = [models[i] for i in list(idx)]
model_average = create_median_model_parameters(new_model_list)
return model_average