-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_hopper_walker_models.py
80 lines (56 loc) · 2.81 KB
/
create_hopper_walker_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# import gym
# import numpy as np
# from stable_baselines3 import TD3
# from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
# env = gym.make("Hopper-v3")
# # The noise objects for DDPG
# n_actions = env.action_space.shape[-1]
# action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
# model = DDPG("MlpPolicy", env, action_noise=action_noise, verbose=1,tensorboard_log="./hopper/")
# model.learn(total_timesteps=500000, log_interval=10,eval_freq=1000)
# model.save("hopper_1")
import gym
import numpy as np
from stable_baselines3 import TD3
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise
from stable_baselines3.td3.policies import TD3Policy
from helpers import constant_schedule
import torch
NO_RUNS = 10
#Hopper
model = []
for i in range(NO_RUNS):
env = gym.make("Hopper-v3")
# The noise objects for TD3
n_actions = env.action_space.shape[-1]
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
policy_kw = {"net_arch":[64,64]}
model.append(TD3("MlpPolicy", env, action_noise=action_noise, verbose=0, policy_kwargs=policy_kw, tensorboard_log="./logs/hopper_small_policy/",seed=i))
model[-1].learn(total_timesteps=100000)
model[-1].save("./models/hopper_small_policy/Hopper_{}".format(str(i).zfill(2)))
# #Half Cheetah
# model = []
# for i in range(NO_RUNS):
# env = gym.make("HalfCheetah-v3")
# # The noise objects for TD3
# n_actions = env.action_space.shape[-1]
# action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
# policy_kw = {"net_arch":[64,64]}
# model.append(TD3("MlpPolicy", env, action_noise=action_noise, verbose=0, tensorboard_log="./logs/halfcheetah_small_policy/",seed=i))
# model[-1].learn(total_timesteps=100000)
# model[-1].save("./models/halfcheetah_small_policy/HalfCheetah_{}".format(str(i).zfill(2)))
# #Walker
# model = []
# for i in range(NO_RUNS):
# env = gym.make("Walker2d-v3")
# # The noise objects for TD3
# n_actions = env.action_space.shape[-1]
# action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions))
# policy = MlpPolicy(env.observation_space,env.action_space,constant_schedule(0.001),net_arch=[64,64])
# model.append(TD3(policy, env, action_noise=action_noise, verbose=0, tensorboard_log="./logs/walker2d_small_policy/",seed=i))
# model[-1].learn(total_timesteps=100000)
# model[-1].save("./models/walker2d_small_policy/Walker2d_{}".format(str(i).zfill(2)))
# model_mean = model.append(TD3("MlpPolicy", env))
# for k in model[0].get_parameters()["policy"]:
# diff = torch.sum(torch.abs(model[0].get_parameters()["policy"][k]-model[1].get_parameters()["policy"][k]))
# print(diff)