Skip to content

Automatically upgrade your Polars code to use the latest syntax available

License

Notifications You must be signed in to change notification settings

MarcoGorelli/polars-upgrade

Repository files navigation

polars-upgrade

PyPI version

Automatically upgrade your Polars code so it's compatible with future versions.

Installation

Easy:

pip install -U polars-upgrade

Usage (command-line)

Run

polars-upgrade my_project --target-version=0.20.31

from the command line. Replace 0.20.31 and my_project with your Polars version, and the name of your directory.

NOTE: this tool will modify your code! You're advised to stage your files before running it.

Usage (pre-commit hook)

-   repo: https://github.com/MarcoGorelli/polars-upgrade
    rev: 0.3.6  # polars-upgrade version goes here
    hooks:
    -   id: polars-upgrade
        args: [--target-version=0.20.31]  # Polars version goes here

Usage (Jupyter Notebooks)

Install nbqa and then run

nbqa polars_upgrade my_project --target-version=0.20.31

Usage (library)

In a Python script:

from polars_upgrade import rewrite, Settings

src = """\
import polars as pl
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings)
print(output)

Output:

import polars as pl
df.select(pl.len())

If your snippet does not include import polars or import as pl, then you will also need to provide pl and/or polars to aliases, else polars-upgrade will not perform the rewrite. Example:

from polars_upgrade import rewrite, Settings

src = """\
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings, aliases={'pl'})
print(output)

Output:

df.select(pl.len())

Supported rewrites

Version 0.18.12+

- pl.avg
+ pl.mean

Version 0.19.0+

- df.groupby_dynamic
+ df.group_by_dynamic
- df.groupby_rolling
+ df.rolling
- df.rolling('ts', period='3d').apply
+ df.rolling('ts', period='3d').map_groups
- pl.col('a').rolling_apply
+ pl.col('a').rolling_map
- pl.col('a').apply
+ pl.col('a').map_elements
- pl.col('a').map
+ pl.col('a').map_batches
- pl.map
+ pl.map_batches
- pl.apply
+ pl.map_groups
- pl.col('a').any(drop_nulls=True)
+ pl.col('a').any(ignore_nulls=True)
- pl.col('a').all(drop_nulls=True)
+ pl.col('a').all(ignore_nulls=True)
- pl.col('a').value_counts(multithreaded=True)
+ pl.col('a').value_counts(parallel=True)

Version 0.19.2+

- pl.col('a').is_not
+ pl.col('a').not_

Version 0.19.3+

- pl.enable_string_cache(True)
+ pl.enable_string_cache()
- pl.enable_string_cache(False)
+ pl.disable_string_cache()
- pl.col('a').list.count_match
+ pl.col('a').list.count_matches
- pl.col('a').is_last
+ pl.col('a').is_last_distinct
- pl.col('a').is_first
+ pl.col('a').is_first_distinct
- pl.col('a').str.strip
+ pl.col('a').str.strip_chars
- pl.col('a').str.lstrip
+ pl.col('a').str.strip_chars_start
- pl.col('a').str.rstrip
+ pl.col('a').str.strip_chars_end
- pl.col('a').str.count_match
+ pl.col('a').str.count_matches
- pl.col("dt").dt.offset_by("1mo_saturating")
+ pl.col("dt").dt.offset_by("1mo")

Version 0.19.4+

- df.group_by_dynamic('ts', every='3d', truncate=True)
+ df.group_by_dynamic('ts', every='3d', label='left')
- df.group_by_dynamic('ts', every='3d', truncate=False)
+ df.group_by_dynamic('ts', every='3d', label='datapoint')

Version 0.19.8+

- pl.col('a').list.lengths
+ pl.col('a').list.len
- pl.col('a').str.lengths
+ pl.col('a').str.len_bytes
- pl.col('a').str.n_chars
+ pl.col('a').str.len_chars

Version 0.19.11+

- pl.col('a').shift(periods=4)
+ pl.col('a').shift(n=4)
- pl.col('a').shift_and_fill(periods=4)
+ pl.col('a').shift_and_fill(n=4)
- pl.col('a').list.shift(periods=4)
+ pl.col('a').list.shift(n=4)
- pl.col('a').map_dict(remapping={1: 2})
+ pl.col('a').map_dict(mapping={1: 2})

Version 0.19.12+

- pl.col('a').keep_name
+ pl.col('a').name.keep
- pl.col('a').suffix
+ pl.col('a').name.suffix
- pl.col('a').prefix
+ pl.col('a').name.prefix
- pl.col('a').map_alias
+ pl.col('a').name.map
- pl.col('a').str.ljust
+ pl.col('a').str.pad_end
- pl.col('a').str.rjust
+ pl.col('a').str.pad_start
- pl.col('a').zfill(alignment=3)
+ pl.col('a').zfill(length=3)
- pl.col('a').ljust(width=3)
+ pl.col('a').ljust(length=3)
- pl.col('a').rjust(width=3)
+ pl.col('a').rjust(length=3)

Version 0.19.13+

- pl.col('a').dt.milliseconds
+ pl.col('a').dt.total_milliseconds
- pl.col('a').dt.microseconds
+ pl.col('a').dt.total_microseconds
- pl.col('a').dt.nanoseconds
+ pl.col('a').dt.total_nanoseconds

(and so on for other units)

Version 0.19.14+

- pl.col('a').list.take
+ pl.col('a').list.gather
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').cummax
+ pl.col('a').cum_max
- pl.col('a').cummin
+ pl.col('a').cum_min
- pl.col('a').cumprod
+ pl.col('a').cum_prod
- pl.col('a').cumsum
+ pl.col('a').cum_sum
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').take
+ pl.col('a').gather
- pl.col('a').take_every
+ pl.col('a').gather_every
- pl.cumsum
+ pl.cum_sum
- pl.cumfold
+ pl.cum_fold
- pl.cumreduce
+ pl.cum_reduce
- pl.cumsum_horizontal
+ pl.cum_sum_horizontal
- pl.col('a').list.take(index=[1, 2])
+ pl.col('a').list.take(indices=[1, 2])
- pl.col('a').str.parse_int(radix=1)
+ pl.col('a').str.parse_int(base=1)

Version 0.19.15+

- pl.col('a').str.json_extract
+ pl.col('a').str.json_decode

Version 0.19.16+

- pl.col('a').map_dict({'a': 'b'})
+ pl.col('a').replace({'a': 'b'}, default=None)
- pl.col('a').map_dict({'a': 'b'}, default='c')
+ pl.col('a').replace({'a': 'b'}, default='c')

Version 0.20.0+

- df.write_database(table_name='foo', if_exists="append")
+ df.write_database(table_name='foo', if_table_exists="append")

Version 0.20.4+

- pl.col('a').where
+ pl.col('a').filter
- pl.count()
+ pl.len()
- df.with_row_count('row_number')
+ df.with_row_index('row_number')
- pl.scan_ndjson(source, row_count_name='foo', row_count_offset=3)
+ pl.scan_ndjson(source, row_index_name='foo', row_index_offset=3)
[...and similarly for `read_csv`, `read_csv_batched`, `scan_csv`, `read_ipc`, `read_ipc_stream`, `scan_ipc`, `read_parquet`, `scan_parquet`]

Version 0.20.5+

- df.pivot(index=index, values=values, columns=columns, aggregate_function='count')
+ df.pivot(index=index, values=values, columns=columns, aggregate_function='len')

Version 0.20.6+

- pl.read_excel(source, xlsx2csv_options=options, read_csv_options=read_options)
+ pl.read_excel(source, engine_options=options, read_options=read_options)

Version 0.20.7+

- pl.threadpool_size
+ pl.thread_pool_size

Version 0.20.8+

- df.pivot(a, b, c)
+ df.pivot(values=a, index=b, columns=c)

Version 0.20.11+

- pl.col('a').meta.write_json
+ pl.col('a').meta.serialize

Version 0.20.14+

- df.group_by_dynamic('time', every='2d', by='symbol')
+ df.group_by_dynamic('time', every='2d', group_by='symbol')
- df.rolling('time', period='2d', by='symbol')
+ df.rolling('time', period='2d', group_by='symbol')
- df.upsample('time', every='2d', by='symbol')
+ df.upsample('time', every='2d', group_by='symbol')

Version 0.20.17+

- pl.from_repr(tbl=data)
+ pl.from_repr(data=data)

Version 0.20.24+

- pl.col('a').rolling_min('2d', by='time')
+ pl.col('a').rolling_min_by(window_size='2d', by='time')
- pl.col('a').rolling_max('2d', by='time')
+ pl.col('a').rolling_max_by(window_size='2d', by='time')
- pl.col('a').rolling_mean('2d', by='time')
+ pl.col('a').rolling_mean_by(window_size='2d', by='time')
- pl.col('a').rolling_std('2d', by='time')
+ pl.col('a').rolling_std_by(window_size='2d', by='time')
- pl.col('a').rolling_var('2d', by='time')
+ pl.col('a').rolling_var_by(window_size='2d', by='time')
- pl.col('a').rolling_prod('2d', by='time')
+ pl.col('a').rolling_prod_by(window_size='2d', by='time')
- pl.col('a').rolling_sum('2d', by='time')
+ pl.col('a').rolling_sum_by(window_size='2d', by='time')

Version 0.20.29+

- df.join(df_right, how='outer')
+ df.join(df_right, how='full')
- df.join(df_right, how='outer_coalesce')
+ df.join(df_right, how='full', coalesce=True)

Version 0.20.31+

- pl.read_csv(file, dtypes=schema)
+ pl.read_csv(file, schema=schema)
- pl.SQLContext(eager_execution=True)
+ pl.SQLContext(eager=True)
- pl.col('a').top_k(k=2, maintain_order=True)
+ pl.col('a').top_k(k=2)

Notes

This work is derivative of pyupgrade - many parts have been lifted verbatim. As required, I've included pyupgrade's license.

About

Automatically upgrade your Polars code to use the latest syntax available

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages