-
Notifications
You must be signed in to change notification settings - Fork 563
/
train_actuator_network.py
367 lines (303 loc) · 15.7 KB
/
train_actuator_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import os
import h5py
import math
import wandb
import pickle
import matplotlib.pyplot as plt
from copy import deepcopy
from tqdm import tqdm
from utils import find_all_hdf5
from imitate_episodes import repeater, compute_dict_mean
import IPython
e = IPython.embed
def main():
### Idea
# input : o o o o o o # observed speed
# target: a a a a a a # commanded speed
# at test time, input desired speed profile and convert that to command
#########################################################
history_len = 50
future_len = 50
prediction_len = 50
batch_size_train = 16
batch_size_val = 16
lr = 1e-4
weight_decay = 1e-4
num_steps = 10000
validate_every = 2000
save_every = 2000
expr_name = f'actuator_network_test_{history_len}_{future_len}_{prediction_len}'
ckpt_dir = f'/scr/tonyzhao/train_logs/{expr_name}' if os.getlogin() == 'tonyzhao' else f'./ckpts/{expr_name}'
dataset_dir = '/scr/tonyzhao/compressed_datasets/aloha_mobile_fork/' if os.getlogin() == 'tonyzhao' else '/home/zfu/data/aloha_mobile_fork/'
#########################################################
assert(history_len + future_len >= prediction_len)
assert(future_len % prediction_len == 0)
wandb.init(project="mobile-aloha2", reinit=True, entity="mobile-aloha2", name=expr_name) # mode='disabled',
if not os.path.isdir(ckpt_dir):
os.makedirs(ckpt_dir)
dataset_path_list = find_all_hdf5(dataset_dir, skip_mirrored_data=True)
dataset_path_list = [n for n in dataset_path_list if 'replayed' in n]
num_episodes = len(dataset_path_list)
# obtain train test split
train_ratio = 0.9
shuffled_episode_ids = np.random.permutation(num_episodes)
train_episode_ids = shuffled_episode_ids[:int(train_ratio * num_episodes)]
val_episode_ids = shuffled_episode_ids[int(train_ratio * num_episodes):]
print(f'\n\nData from: {dataset_dir}\n- Train on {len(train_episode_ids)} episodes\n- Test on {len(val_episode_ids)} episodes\n\n')
# obtain normalization stats for qpos and action
# if load_pretrain:
# with open(os.path.join('/home/zfu/interbotix_ws/src/act/ckpts/pretrain_all', 'dataset_stats.pkl'), 'rb') as f:
# norm_stats = pickle.load(f)
# print('Loaded pretrain dataset stats')
norm_stats, all_episode_len = get_norm_stats(dataset_path_list)
train_episode_len = [all_episode_len[i] for i in train_episode_ids]
val_episode_len = [all_episode_len[i] for i in val_episode_ids]
assert(all_episode_len[0] % prediction_len == 0)
# save dataset stats
stats_path = os.path.join(ckpt_dir, f'actuator_net_stats.pkl')
with open(stats_path, 'wb') as f:
pickle.dump(norm_stats, f)
# construct dataset and dataloader
train_dataset = EpisodicDataset(dataset_path_list, norm_stats, train_episode_ids, train_episode_len, history_len, future_len, prediction_len)
val_dataset = EpisodicDataset(dataset_path_list, norm_stats, val_episode_ids, val_episode_len, history_len, future_len, prediction_len)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size_val, shuffle=True, pin_memory=True, num_workers=1, prefetch_factor=1)
policy = ActuatorNetwork(prediction_len).cuda()
optimizer = torch.optim.AdamW(policy.parameters(), lr=lr, weight_decay=weight_decay)
n_parameters = sum(p.numel() for p in policy.parameters() if p.requires_grad)
print("number of parameters: %.2fM" % (n_parameters/1e6,))
min_val_loss = np.inf
best_ckpt_info = None
train_dataloader = repeater(train_dataloader)
for step in tqdm(range(num_steps+1)):
# validation
if step % validate_every == 0:
print('validating')
with torch.inference_mode():
policy.eval()
validation_dicts = []
for batch_idx, data in enumerate(val_dataloader):
observed_speed, commanded_speed = data
out, forward_dict = policy(observed_speed.cuda(), commanded_speed.cuda())
validation_dicts.append(forward_dict)
validation_summary = compute_dict_mean(validation_dicts)
epoch_val_loss = validation_summary['loss']
if epoch_val_loss < min_val_loss:
min_val_loss = epoch_val_loss
best_ckpt_info = (step, min_val_loss, deepcopy(policy.state_dict()))
for k in list(validation_summary.keys()):
validation_summary[f'val_{k}'] = validation_summary.pop(k)
wandb.log(validation_summary, step=step)
print(f'Val loss: {epoch_val_loss:.5f}')
summary_string = ''
for k, v in validation_summary.items():
summary_string += f'{k}: {v.item():.3f} '
print(summary_string)
visualize_prediction(dataset_path_list, val_episode_ids, policy, norm_stats, history_len, future_len, prediction_len, ckpt_dir, step, 'val')
visualize_prediction(dataset_path_list, train_episode_ids, policy, norm_stats, history_len, future_len, prediction_len, ckpt_dir, step, 'train')
# training
policy.train()
optimizer.zero_grad()
data = next(train_dataloader)
observed_speed, commanded_speed = data
out, forward_dict = policy(observed_speed.cuda(), commanded_speed.cuda())
# backward
loss = forward_dict['loss']
loss.backward()
optimizer.step()
wandb.log(forward_dict, step=step) # not great, make training 1-2% slower
if step % save_every == 0:
ckpt_path = os.path.join(ckpt_dir, f'actuator_net_step_{step}.ckpt')
torch.save(policy.state_dict(), ckpt_path)
ckpt_path = os.path.join(ckpt_dir, f'actuator_net_last.ckpt')
torch.save(policy.state_dict(), ckpt_path)
best_step, min_val_loss, best_state_dict = best_ckpt_info
ckpt_path = os.path.join(ckpt_dir, f'actuator_net_step_{best_step}.ckpt')
torch.save(best_state_dict, ckpt_path)
print(f'Training finished:\nval loss {min_val_loss:.6f} at step {best_step}')
def visualize_prediction(dataset_path_list, episode_ids, policy, norm_stats, history_len, future_len, prediction_len, ckpt_dir, step, name):
num_vis = 2
episode_ids = episode_ids[:num_vis]
vis_path = [dataset_path_list[i] for i in episode_ids]
for i, dataset_path in enumerate(vis_path):
try:
with h5py.File(dataset_path, 'r') as root:
commanded_speed = root['/base_action'][()]
observed_speed = root['/obs_tracer'][()]
except Exception as ee:
print(f'Error loading {dataset_path} in get_norm_stats')
print(ee)
quit()
# commanded_speed = (commanded_speed - norm_stats["commanded_speed_mean"]) / norm_stats["commanded_speed_std"]
norm_observed_speed = (observed_speed - norm_stats["observed_speed_mean"]) / norm_stats["observed_speed_std"]
out_unnorm_fn = lambda x: (x * norm_stats["commanded_speed_std"]) + norm_stats["commanded_speed_mean"]
history_pad = np.zeros((history_len, 2))
future_pad = np.zeros((future_len, 2))
norm_observed_speed = np.concatenate([history_pad, norm_observed_speed, future_pad], axis=0)
episode_len = commanded_speed.shape[0]
all_pred = []
for t in range(0, episode_len, prediction_len):
offset_start_ts = t + history_len
policy_input = norm_observed_speed[offset_start_ts-history_len: offset_start_ts+future_len]
policy_input = torch.from_numpy(policy_input).float().unsqueeze(dim=0).cuda()
pred = policy(policy_input)
pred = pred.detach().cpu().numpy()[0]
all_pred += out_unnorm_fn(pred).tolist()
all_pred = np.array(all_pred)
plot_path = os.path.join(ckpt_dir, f'{name}{i}_step{step}_linear')
plt.figure()
plt.plot(commanded_speed[:, 0], label='commanded_speed_linear')
plt.plot(observed_speed[:, 0], label='observed_speed_linear')
plt.plot(all_pred[:, 0], label='pred_commanded_speed_linear')
# plot vertical grey dotted lines every prediction_len
for t in range(0, episode_len, prediction_len):
plt.axvline(t, linestyle='--', color='grey')
plt.legend()
plt.savefig(plot_path)
plt.close()
plot_path = os.path.join(ckpt_dir, f'{name}{i}_step{step}_angular')
plt.figure()
plt.plot(commanded_speed[:, 1], label='commanded_speed_angular')
plt.plot(observed_speed[:, 1], label='observed_speed_angular')
plt.plot(all_pred[:, 1], label='pred_commanded_speed_angular')
# plot vertical dotted lines every prediction_len
for t in range(0, episode_len, prediction_len):
plt.axvline(t, linestyle='--', color='grey')
plt.legend()
plt.savefig(plot_path)
plt.close()
class ActuatorNetwork(nn.Module):
def __init__(self, prediction_len):
super().__init__()
d_model = 256
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=8)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=3)
self.pe = PositionalEncoding(d_model)
self.in_proj = nn.Linear(2, d_model)
self.out_proj = nn.Linear(d_model, 2)
self.prediction_len = prediction_len
def forward(self, src, tgt=None):
if tgt is not None: # training time
# (batch, seq, feature) -> (seq, batch, feature)
src = self.in_proj(src)
src = torch.einsum('b s d -> s b d', src)
src = self.pe(src)
out = self.transformer(src)
tgt = torch.einsum('b s d -> s b d', tgt)
assert(self.prediction_len == tgt.shape[0])
out = out[0: self.prediction_len] # take first few tokens only for prediction
out = self.out_proj(out)
l2_loss = loss = F.mse_loss(out, tgt)
loss_dict = {'loss': l2_loss}
out = torch.einsum('s b d -> b s d', out)
return out, loss_dict
else:
src = self.in_proj(src)
src = torch.einsum('b s d -> s b d', src)
src = self.pe(src)
out = self.transformer(src)
out = out[0: self.prediction_len] # take first few tokens only for prediction
out = self.out_proj(out)
out = torch.einsum('s b d -> b s d', out)
return out
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Arguments:
x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
"""
x = x + self.pe[:x.size(0)]
return self.dropout(x)
def get_norm_stats(dataset_path_list):
all_commanded_speed = []
all_observed_speed = []
all_episode_len = []
for dataset_path in dataset_path_list:
try:
with h5py.File(dataset_path, 'r') as root:
commanded_speed = root['/base_action'][()]
observed_speed = root['/obs_tracer'][()]
except Exception as e:
print(f'Error loading {dataset_path} in get_norm_stats')
print(e)
quit()
all_commanded_speed.append(torch.from_numpy(commanded_speed))
all_observed_speed.append(torch.from_numpy(observed_speed))
all_episode_len.append(len(commanded_speed))
all_commanded_speed = torch.cat(all_commanded_speed, dim=0)
all_observed_speed = torch.cat(all_observed_speed, dim=0)
# normalize all_commanded_speed
commanded_speed_mean = all_commanded_speed.mean(dim=[0]).float()
commanded_speed_std = all_commanded_speed.std(dim=[0]).float()
commanded_speed_std = torch.clip(commanded_speed_std, 1e-2, np.inf) # clipping
# normalize all_observed_speed
observed_speed_mean = all_observed_speed.mean(dim=[0]).float()
observed_speed_std = all_observed_speed.std(dim=[0]).float()
observed_speed_std = torch.clip(observed_speed_std, 1e-2, np.inf) # clipping
stats = {"commanded_speed_mean": commanded_speed_mean.numpy(), "commanded_speed_std": commanded_speed_std.numpy(),
"observed_speed_mean": observed_speed_mean.numpy(), "observed_speed_std": observed_speed_std.numpy()}
return stats, all_episode_len
class EpisodicDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path_list, norm_stats, episode_ids, episode_len, history_len, future_len, prediction_len):
super(EpisodicDataset).__init__()
self.episode_ids = episode_ids
self.dataset_path_list = dataset_path_list
self.norm_stats = norm_stats
self.episode_len = episode_len
self.cumulative_len = np.cumsum(self.episode_len)
self.max_episode_len = max(episode_len)
self.history_len = history_len
self.future_len = future_len
self.prediction_len = prediction_len
self.is_sim = False
self.history_pad = np.zeros((self.history_len, 2))
self.future_pad = np.zeros((self.future_len, 2))
self.prediction_pad = np.zeros((self.prediction_len, 2))
self.__getitem__(0) # initialize self.is_sim
def __len__(self):
return sum(self.episode_len)
def _locate_transition(self, index):
assert index < self.cumulative_len[-1]
episode_index = np.argmax(self.cumulative_len > index) # argmax returns first True index
start_ts = index - (self.cumulative_len[episode_index] - self.episode_len[episode_index])
episode_id = self.episode_ids[episode_index]
return episode_id, start_ts
def __getitem__(self, index):
episode_id, start_ts = self._locate_transition(index)
dataset_path = self.dataset_path_list[episode_id]
try:
# print(dataset_path)
with h5py.File(dataset_path, 'r') as root:
commanded_speed = root['/base_action'][()]
observed_speed = root['/obs_tracer'][()]
observed_speed = np.concatenate([self.history_pad, observed_speed, self.future_pad], axis=0)
commanded_speed = np.concatenate([commanded_speed, self.prediction_pad], axis=0)
offset_start_ts = start_ts + self.history_len
commanded_speed = commanded_speed[start_ts: start_ts+self.prediction_len]
observed_speed = observed_speed[offset_start_ts-self.history_len: offset_start_ts+self.future_len]
commanded_speed = torch.from_numpy(commanded_speed).float()
observed_speed = torch.from_numpy(observed_speed).float()
# normalize to mean 0 std 1
commanded_speed = (commanded_speed - self.norm_stats["commanded_speed_mean"]) / self.norm_stats["commanded_speed_std"]
observed_speed = (observed_speed - self.norm_stats["observed_speed_mean"]) / self.norm_stats["observed_speed_std"]
except:
print(f'Error loading {dataset_path} in __getitem__')
quit()
# print(image_data.dtype, qpos_data.dtype, action_data.dtype, is_pad.dtype)
return observed_speed, commanded_speed
if __name__ == '__main__':
main()