Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ABL on Delta starts at x0 y0 (instead of at edge of bed) and slants #4206

Closed
alitai opened this issue Jul 4, 2016 · 58 comments
Closed

ABL on Delta starts at x0 y0 (instead of at edge of bed) and slants #4206

alitai opened this issue Jul 4, 2016 · 58 comments

Comments

@alitai
Copy link

alitai commented Jul 4, 2016

Hi - Still working on getting the BugFix version to work. Downloaded a new RCBugFix branch today and am getting an issue with the ABL functionality. The probing starts in the center (X0 Y0) and moves to the rear right quadrant, and does so at a slant.

I am using the Zmin pin and the nozzle as a probe (with a Trinket Based FSR detector), so offsets are all '0'.

Thanks,

Assaf

Bed Leveling Configuration

// @section bedlevel

#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
//#define DEBUG_LEVELING_FEATURE

#if ENABLED(AUTO_BED_LEVELING_FEATURE)

  // There are 2 different ways to specify probing locations:
  //
  // - "grid" mode
  //   Probe several points in a rectangular grid.
  //   You specify the rectangle and the density of sample points.
  //   This mode is preferred because there are more measurements.
  //
  // - "3-point" mode
  //   Probe 3 arbitrary points on the bed (that aren't collinear)
  //   You specify the XY coordinates of all 3 points.

  // Enable this to sample the bed in a grid (least squares solution).
  // Note: this feature generates 10KB extra code size.
  #define AUTO_BED_LEVELING_GRID  // Deltas only support grid mode.

  #if ENABLED(AUTO_BED_LEVELING_GRID)

    // Set the rectangle in which to probe
    #define DELTA_PROBEABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 10)
    #define LEFT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)
    #define RIGHT_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS
    #define FRONT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)
    #define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS
@alitai
Copy link
Author

alitai commented Jul 4, 2016

`

Z Probe Configuration

// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.
//
// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***
//
// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
//   - normally-closed switches to GND and D32.
//   - normally-open switches to 5V and D32.
//
// Normally-closed switches are advised and are the default.
//
// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Some other boards map differently.
// To set or change the pin for your board, edit the appropriate pins_XXXXX.h file.
//
// WARNING:
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.
//
//#define Z_MIN_PROBE_ENDSTOP


// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.
// The Z_MIN_PIN will then be used for both Z-homing and probing.
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

// To use a probe you must enable one of the two options above!

// This option disables the use of the Z_MIN_PROBE_PIN
// To enable the Z probe pin but disable its use, uncomment the line below. This only affects a
// Z probe switch if you have a separate Z min endstop also and have activated Z_MIN_PROBE_ENDSTOP above.
// If you're using the Z MIN endstop connector for your Z probe, this has no effect.
//#define DISABLE_Z_MIN_PROBE_ENDSTOP

// Enable Z Probe Repeatability test to see how accurate your probe is
//#define Z_MIN_PROBE_REPEATABILITY_TEST

//
// Probe Raise options provide clearance for the probe to deploy, stow, and travel.
//
#define Z_RAISE_PROBE_DEPLOY_STOW 50 // Raise to make room for the probe to deploy / stow
#define Z_RAISE_BETWEEN_PROBINGS 5  // Raise between probing points.

//
// For M851 give a range for adjusting the Z probe offset
//
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
`

@thinkyhead
Copy link
Member

thinkyhead commented Jul 4, 2016

Hi @alitai You should post your entire Configuration.h so we can see your movement limits, endstop configuration, etc.

It will also help if you enable DEBUG_LEVELING_FEATURE. Then you can use M111 S32 to enable extra logging for leveling. Please post the output of your log when you do G29.

@alitai
Copy link
Author

alitai commented Jul 5, 2016

Configuration.h

/**
 * Marlin RCBugfix
 * 
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

/**
 * Configuration.h
 *
 * Basic settings such as:
 *
 * - Type of electronics
 * - Type of temperature sensor
 * - Printer geometry
 * - Endstop configuration
 * - LCD controller
 * - Extra features
 *
 * Advanced settings can be found in Configuration_adv.h
 *
 */
#ifndef CONFIGURATION_H
#define CONFIGURATION_H

/**
 *
 *  ***********************************
 *  **  ATTENTION TO ALL DEVELOPERS  **
 *  ***********************************
 *
 * You must increment this version number for every significant change such as,
 * but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
 *
 * Note: Update also Version.h !
 */
#define CONFIGURATION_H_VERSION 010100

#include "boards.h"
#include "macros.h"

//===========================================================================
//============================= Getting Started =============================
//===========================================================================

/**
 * Here are some standard links for getting your machine calibrated:
 *
 * http://reprap.org/wiki/Calibration
 * http://youtu.be/wAL9d7FgInk
 * http://calculator.josefprusa.cz
 * http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
 * http://www.thingiverse.com/thing:5573
 * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
 * http://www.thingiverse.com/thing:298812
 */

//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//

//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//

// @section info

#if ENABLED(USE_AUTOMATIC_VERSIONING)
  #include "_Version.h"
#else
  #include "Version.h"
#endif

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
//#define STRING_SPLASH_LINE2 STRING_DISTRIBUTION_DATE // will be shown during bootup in line 2

// @section machine

// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
// :[0,1,2,3,4,5,6,7]
#define SERIAL_PORT 0

// This determines the communication speed of the printer
// :[2400,9600,19200,38400,57600,115200,250000]
#define BAUDRATE 250000

// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH

// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
  #define MOTHERBOARD BOARD_MEGATRONICS_2 
#endif

// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
#define CUSTOM_MACHINE_NAME "Mini Kossel"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// This defines the number of extruders
// :[1,2,3,4]
#define EXTRUDERS 1

// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00}  // (in mm) for each extruder, offset of the hotend on the Y axis

//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
// :{1:'ATX',2:'X-Box 360'}

#define POWER_SUPPLY 1

// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
//#define PS_DEFAULT_OFF

// @section temperature

//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -3 is thermocouple with MAX31855 (only for sensor 0)
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 13 is 100k Hisens 3950  1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
// 70 is the 100K thermistor found in the bq Hephestos 2
//
//    1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
//                          (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
//     Use it for Testing or Development purposes. NEVER for production machine.
//#define DUMMY_THERMISTOR_998_VALUE 25
//#define DUMMY_THERMISTOR_999_VALUE 100
// :{ '0': "Not used", '4': "10k !! do not use for a hotend. Bad resolution at high temp. !!", '1': "100k / 4.7k - EPCOS", '51': "100k / 1k - EPCOS", '6': "100k / 4.7k EPCOS - Not as accurate as Table 1", '5': "100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '7': "100k / 4.7k Honeywell 135-104LAG-J01", '71': "100k / 4.7k Honeywell 135-104LAF-J01", '8': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9': "100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10': "100k / 4.7k RS 198-961", '11': "100k / 4.7k beta 3950 1%", '12': "100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13': "100k Hisens 3950  1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '60': "100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '55': "100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '2': "200k / 4.7k - ATC Semitec 204GT-2", '52': "200k / 1k - ATC Semitec 204GT-2", '-3': "Thermocouple + MAX31855 (only for sensor 0)", '-2': "Thermocouple + MAX6675 (only for sensor 0)", '-1': "Thermocouple + AD595", '3': "Mendel-parts / 4.7k", '1047': "Pt1000 / 4.7k", '1010': "Pt1000 / 1k (non standard)", '20': "PT100 (Ultimainboard V2.x)", '147': "Pt100 / 4.7k", '110': "Pt100 / 1k (non-standard)", '998': "Dummy 1", '999': "Dummy 2" }
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 1

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 5

// Extruder temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10  // (seconds)
#define TEMP_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

// Bed temperature must be close to target for this long before M190 returns success
#define TEMP_BED_RESIDENCY_TIME 0   // (seconds)
#define TEMP_BED_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150

// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define HOTEND_WATTS (12.0*12.0/6.7) // P=U^2/R
//#define BED_WATTS (12.0*12.0/1.1)    // P=U^2/R

//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning

// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#if ENABLED(PIDTEMP)
  //#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
  //#define PID_DEBUG // Sends debug data to the serial port.
  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
  //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
                                  // Set/get with gcode: M301 E[extruder number, 0-2]
  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
                                  // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
  #define PID_INTEGRAL_DRIVE_MAX PID_MAX  //limit for the integral term
  #define K1 0.95 //smoothing factor within the PID

  // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it

  //Assaf: Autotune values  
  #define  DEFAULT_Kp 34.03
  #define  DEFAULT_Ki 4.36
  #define  DEFAULT_Kd 66.34

  // Ultimaker
  //#define  DEFAULT_Kp 22.2
  //#define  DEFAULT_Ki 1.08
  //#define  DEFAULT_Kd 114

  // MakerGear
  //#define  DEFAULT_Kp 7.0
  //#define  DEFAULT_Ki 0.1
  //#define  DEFAULT_Kd 12

  // Mendel Parts V9 on 12V
  //#define  DEFAULT_Kp 63.0
  //#define  DEFAULT_Ki 2.25
  //#define  DEFAULT_Kd 440

#endif // PIDTEMP

//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
#define PIDTEMPBED

//#define BED_LIMIT_SWITCHING

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#if ENABLED(PIDTEMPBED)

  //#define PID_BED_DEBUG // Sends debug data to the serial port.

  #define PID_BED_INTEGRAL_DRIVE_MAX MAX_BED_POWER //limit for the integral term

  //Assaf: From Bed Autotune
  #define  DEFAULT_bedKp 679.07
  #define  DEFAULT_bedKi 68.17
  #define  DEFAULT_bedKd 1691.15

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
  //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
  //#define  DEFAULT_bedKp 10.00
  //#define  DEFAULT_bedKi .023
  //#define  DEFAULT_bedKd 305.4

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
  //from pidautotune
  //#define  DEFAULT_bedKp 97.1
  //#define  DEFAULT_bedKi 1.41
  //#define  DEFAULT_bedKd 1675.16

  // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

// @section extruder

//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================

/**
 * Thermal Protection protects your printer from damage and fire if a
 * thermistor falls out or temperature sensors fail in any way.
 *
 * The issue: If a thermistor falls out or a temperature sensor fails,
 * Marlin can no longer sense the actual temperature. Since a disconnected
 * thermistor reads as a low temperature, the firmware will keep the heater on.
 *
 * If you get "Thermal Runaway" or "Heating failed" errors the
 * details can be tuned in Configuration_adv.h
 */

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED     // Enable thermal protection for the heated bed

//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================

// @section machine

// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
//#define COREXY
//#define COREXZ
//#define COREYZ

//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
// Enable DELTA kinematics and most of the default configuration for Deltas
#define DELTA

#if ENABLED(DELTA)

  // Make delta curves from many straight lines (linear interpolation).
  // This is a trade-off between visible corners (not enough segments)
  // and processor overload (too many expensive sqrt calls).
  #define DELTA_SEGMENTS_PER_SECOND 200

  // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them

  // Center-to-center distance of the holes in the diagonal push rods.
  #define DELTA_DIAGONAL_ROD 215.0 // mm

  // Horizontal offset from middle of printer to smooth rod center.
  #define DELTA_SMOOTH_ROD_OFFSET 165.0 // mm

  // Horizontal offset of the universal joints on the end effector.
  #define DELTA_EFFECTOR_OFFSET 34.6 // mm

  // Horizontal offset of the universal joints on the carriages.
  #define DELTA_CARRIAGE_OFFSET 25.1 // mm

  // Horizontal distance bridged by diagonal push rods when effector is centered.
  #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET))

  // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
  #define DELTA_PRINTABLE_RADIUS 75.0

  // Delta calibration menu
  // uncomment to add three points calibration menu option.
  // See http://minow.blogspot.com/index.html#4918805519571907051
  // If needed, adjust the X, Y, Z calibration coordinates
  // in ultralcd.cpp@lcd_delta_calibrate_menu()
  //#define DELTA_CALIBRATION_MENU

#endif

// Enable this option for Toshiba steppers
//#define CONFIG_STEPPERS_TOSHIBA

//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
//#define USE_XMIN_PLUG
//#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
#define USE_XMAX_PLUG
#define USE_YMAX_PLUG
#define USE_ZMAX_PLUG

// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

#if DISABLED(ENDSTOPPULLUPS)
  // fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
  //#define ENDSTOPPULLUP_XMAX
  //#define ENDSTOPPULLUP_YMAX
  //#define ENDSTOPPULLUP_ZMAX
  //#define ENDSTOPPULLUP_XMIN
  //#define ENDSTOPPULLUP_YMIN
  //#define ENDSTOPPULLUP_ZMIN
  //#define ENDSTOPPULLUP_ZMIN_PROBE
#endif

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.

//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================

//
// Probe Type
// Probes are sensors/switches that are activated / deactivated before/after use.
//
// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
// You must activate one of these to use AUTO_BED_LEVELING_FEATURE below.
//
// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.
//

// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
// For example an inductive probe, or a setup that uses the nozzle to probe.
// An inductive probe must be deactivated to go below
// its trigger-point if hardware endstops are active.
#define FIX_MOUNTED_PROBE

// Z Servo Probe, such as an endstop switch on a rotating arm.
//#define Z_ENDSTOP_SERVO_NR 0
//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles

// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// Z Probe to nozzle (X,Y) offset, relative to (0, 0).
// X and Y offsets must be integers.
//
// In the following example the X and Y offsets are both positive:
// #define X_PROBE_OFFSET_FROM_EXTRUDER 10
// #define Y_PROBE_OFFSET_FROM_EXTRUDER 10
//
//    +-- BACK ---+
//    |           |
//  L |    (+) P  | R <-- probe (20,20)
//  E |           | I
//  F | (-) N (+) | G <-- nozzle (10,10)
//  T |           | H
//    |    (-)    | T
//    |           |
//    O-- FRONT --+
//  (0,0)
#define X_PROBE_OFFSET_FROM_EXTRUDER 0     // X offset: -left  +right  [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER 0   // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER 0  // Z offset: -below +above  [the nozzle]

// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 4000

// Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe
// Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN.
//#define Z_PROBE_ALLEN_KEY

#if ENABLED(Z_PROBE_ALLEN_KEY)
  // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,
  // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.

  // Kossel Mini
  #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X 30.0
  #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y DELTA_PRINTABLE_RADIUS
  #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z 100.0
  #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_SPEED

  #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X 0.0
  #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y DELTA_PRINTABLE_RADIUS
  #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z 100.0
  #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_SPEED/10)

  #define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20
  // Move the probe into position
  #define Z_PROBE_ALLEN_KEY_STOW_1_X -64.0
  #define Z_PROBE_ALLEN_KEY_STOW_1_Y 56.0
  #define Z_PROBE_ALLEN_KEY_STOW_1_Z 23.0
  #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_SPEED
  // Move the nozzle down further to push the probe into retracted position.
  #define Z_PROBE_ALLEN_KEY_STOW_2_X  Z_PROBE_ALLEN_KEY_STOW_1_X
  #define Z_PROBE_ALLEN_KEY_STOW_2_Y  Z_PROBE_ALLEN_KEY_STOW_1_Y
  #define Z_PROBE_ALLEN_KEY_STOW_2_Z  (Z_PROBE_ALLEN_KEY_STOW_1_Z-Z_PROBE_ALLEN_KEY_STOW_DEPTH)
  #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_SPEED/10)
  // Raise things back up slightly so we don't bump into anything
  #define Z_PROBE_ALLEN_KEY_STOW_3_X  Z_PROBE_ALLEN_KEY_STOW_2_X
  #define Z_PROBE_ALLEN_KEY_STOW_3_Y  Z_PROBE_ALLEN_KEY_STOW_2_Y
  #define Z_PROBE_ALLEN_KEY_STOW_3_Z  (Z_PROBE_ALLEN_KEY_STOW_1_Z+Z_PROBE_ALLEN_KEY_STOW_DEPTH)
  #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE (XY_PROBE_SPEED/2)

#endif // Z_PROBE_ALLEN_KEY

// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.
//
// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***
//
// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
//   - normally-closed switches to GND and D32.
//   - normally-open switches to 5V and D32.
//
// Normally-closed switches are advised and are the default.
//
// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Some other boards map differently.
// To set or change the pin for your board, edit the appropriate pins_XXXXX.h file.
//
// WARNING:
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.
//
//#define Z_MIN_PROBE_ENDSTOP


// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.
// The Z_MIN_PIN will then be used for both Z-homing and probing.
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

// To use a probe you must enable one of the two options above!

// This option disables the use of the Z_MIN_PROBE_PIN
// To enable the Z probe pin but disable its use, uncomment the line below. This only affects a
// Z probe switch if you have a separate Z min endstop also and have activated Z_MIN_PROBE_ENDSTOP above.
// If you're using the Z MIN endstop connector for your Z probe, this has no effect.
//#define DISABLE_Z_MIN_PROBE_ENDSTOP

// Enable Z Probe Repeatability test to see how accurate your probe is
//#define Z_MIN_PROBE_REPEATABILITY_TEST

//
// Probe Raise options provide clearance for the probe to deploy, stow, and travel.
//
#define Z_RAISE_PROBE_DEPLOY_STOW 50 // Raise to make room for the probe to deploy / stow
#define Z_RAISE_BETWEEN_PROBINGS 5  // Raise between probing points.

//
// For M851 give a range for adjusting the Z probe offset
//
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{0:'Low',1:'High'}
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// Warn on display about possibly reduced accuracy
//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false // DELTA does not invert
#define INVERT_Y_DIR false
#define INVERT_Z_DIR false

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true //Assaf for the E3D Titan
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false

// @section homing
//#define MIN_Z_HEIGHT_FOR_HOMING 15// (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...
                                    // Be sure you have this distance over your Z_MAX_POS in case.

// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR 1  // deltas always home to max
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true  // If true, axis won't move to coordinates greater than the defined lengths below.

// @section machine

// Travel limits after homing (units are in mm)
#define X_MIN_POS -(DELTA_PRINTABLE_RADIUS)
#define Y_MIN_POS -(DELTA_PRINTABLE_RADIUS)
#define Z_MIN_POS 0
#define X_MAX_POS DELTA_PRINTABLE_RADIUS
#define Y_MAX_POS DELTA_PRINTABLE_RADIUS
#define Z_MAX_POS MANUAL_Z_HOME_POS

//===========================================================================
//========================= Filament Runout Sensor ==========================
//===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
                                 // In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
                                 // It is assumed that when logic high = filament available
                                 //                    when logic  low = filament ran out
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
  const bool FIL_RUNOUT_INVERTING = false; // set to true to invert the logic of the sensor.
  #define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
  #define FILAMENT_RUNOUT_SCRIPT "M600"
#endif

//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================

//#define MESH_BED_LEVELING    // Enable mesh bed leveling.

#if ENABLED(MESH_BED_LEVELING)
  #define MESH_INSET 10        // Mesh inset margin on print area
  #define MESH_NUM_X_POINTS 3  // Don't use more than 7 points per axis, implementation limited.
  #define MESH_NUM_Y_POINTS 3
  #define MESH_HOME_SEARCH_Z 4  // Z after Home, bed somewhere below but above 0.0.

  //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]

  //#define MANUAL_BED_LEVELING  // Add display menu option for bed leveling.

  #if ENABLED(MANUAL_BED_LEVELING)
    #define MBL_Z_STEP 0.025  // Step size while manually probing Z axis.
  #endif  // MANUAL_BED_LEVELING

#endif  // MESH_BED_LEVELING

//===========================================================================
//============================ Bed Auto Leveling ============================
//===========================================================================

// @section bedlevel

#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
#define DEBUG_LEVELING_FEATURE

#if ENABLED(AUTO_BED_LEVELING_FEATURE)

  // There are 2 different ways to specify probing locations:
  //
  // - "grid" mode
  //   Probe several points in a rectangular grid.
  //   You specify the rectangle and the density of sample points.
  //   This mode is preferred because there are more measurements.
  //
  // - "3-point" mode
  //   Probe 3 arbitrary points on the bed (that aren't collinear)
  //   You specify the XY coordinates of all 3 points.

  // Enable this to sample the bed in a grid (least squares solution).
  // Note: this feature generates 10KB extra code size.
  #define AUTO_BED_LEVELING_GRID  // Deltas only support grid mode.

  #if ENABLED(AUTO_BED_LEVELING_GRID)

    // Set the rectangle in which to probe
    #define DELTA_PROBEABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 10)
    #define LEFT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)
    #define RIGHT_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS
    #define FRONT_PROBE_BED_POSITION -(DELTA_PROBEABLE_RADIUS)
    #define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS


    #define MIN_PROBE_EDGE 10 // The Z probe minimum square sides can be no smaller than this.

    // Non-linear bed leveling will be used.
    // Compensate by interpolating between the nearest four Z probe values for each point.
    // Useful for deltas where the print surface may appear like a bowl or dome shape.
    // Works best with AUTO_BED_LEVELING_GRID_POINTS 5 or higher.
    #define AUTO_BED_LEVELING_GRID_POINTS 9

  #else  // !AUTO_BED_LEVELING_GRID

    // Arbitrary points to probe.
    // A simple cross-product is used to estimate the plane of the bed.
    #define ABL_PROBE_PT_1_X 15
    #define ABL_PROBE_PT_1_Y 180
    #define ABL_PROBE_PT_2_X 15
    #define ABL_PROBE_PT_2_Y 20
    #define ABL_PROBE_PT_3_X 170
    #define ABL_PROBE_PT_3_Y 20

  #endif // !AUTO_BED_LEVELING_GRID

  //#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" // These commands will be executed in the end of G29 routine.
                                                                             // Useful to retract a deployable Z probe.

  // If you've enabled AUTO_BED_LEVELING_FEATURE and are using the Z Probe for Z Homing,
  // it is highly recommended you also enable Z_SAFE_HOMING below!

#endif // AUTO_BED_LEVELING_FEATURE


// @section homing

// The position of the homing switches
#define MANUAL_HOME_POSITIONS  // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)

// Manual homing switch locations:
// For deltabots this means top and center of the Cartesian print volume.
#if ENABLED(MANUAL_HOME_POSITIONS)
  #define MANUAL_X_HOME_POS 0
  #define MANUAL_Y_HOME_POS 0
  #define MANUAL_Z_HOME_POS 243.4 // For delta: Distance between nozzle and print surface after homing.
#endif

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
// With this feature enabled:
//
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Position the Z probe in a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)
  #define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2)    // X point for Z homing when homing all axis (G28).
  #define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2)    // Y point for Z homing when homing all axis (G28).
#endif


// @section motion

/**
 * MOVEMENT SETTINGS
 */

// delta homing speeds must be the same on xyz
#define HOMING_FEEDRATE_XYZ (200*60)
#define HOMING_FEEDRATE_E 0
#define HOMING_FEEDRATE { HOMING_FEEDRATE_XYZ, HOMING_FEEDRATE_XYZ, HOMING_FEEDRATE_XYZ, HOMING_FEEDRATE_E }

// default settings
// delta speeds must be the same on xyz
#define DEFAULT_AXIS_STEPS_PER_UNIT   {200, 200, 200, 865}  // default steps per unit for Kossel (GT2, 20 tooth)
#define DEFAULT_MAX_FEEDRATE          {200, 200, 200, 25}    // (mm/sec) Assaf: was {500,500,500,25}
#define DEFAULT_MAX_ACCELERATION      {9000,9000,9000,10000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.

#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION  3000    // E acceleration in mm/s^2 for retracts
#define DEFAULT_TRAVEL_ACCELERATION   3000    // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK                20.0    // (mm/sec)
#define DEFAULT_ZJERK                 20.0    // (mm/sec) Must be same as XY for delta
#define DEFAULT_EJERK                 20.0     // (mm/sec)


//=============================================================================
//============================= Additional Features ===========================
//=============================================================================

// @section extras

//
// EEPROM
//
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS

#if ENABLED(EEPROM_SETTINGS)
  // To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
  #define EEPROM_CHITCHAT // Please keep turned on if you can.
#endif

//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE       // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.

//
// M100 Free Memory Watcher
//
//#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose

//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT

//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

//
// Print job timer
//
// Enable this option to automatically start and stop the
// print job timer when M104 and M109 commands are received.
//
// In all cases the timer can be started and stopped using
// the following commands:
//
// - M75  - Start the print job timer
// - M76  - Pause the print job timer
// - M77  - Stop the print job timer
#define PRINTJOB_TIMER_AUTOSTART

//
// Print Counter
//
// When enabled Marlin will keep track of some print statistical data such as:
//  - Total print jobs
//  - Total successful print jobs
//  - Total failed print jobs
//  - Total time printing
//
// This information can be viewed by the M78 command.
//#define PRINTCOUNTER

//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================

// @section lcd

//
// LCD LANGUAGE
//
// Here you may choose the language used by Marlin on the LCD menus, the following
// list of languages are available:
//    en, an, bg, ca, cn, cz, de, es, eu, fi, fr, gl, hr, it, kana,
//    kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, test
//
// :{'en':'English','an':'Aragonese','bg':'Bulgarian','ca':'Catalan','cn':'Chinese','cz':'Czech','de':'German','es':'Spanish','eu':'Basque-Euskera','fi':'Finnish','fr':'French','gl':'Galician','hr':'Croatian','it':'Italian','kana':'Japanese','kana_utf8':'Japanese (UTF8)','nl':'Dutch','pl':'Polish','pt':'Portuguese','pt-br':'Portuguese (Brazilian)','pt-br_utf8':'Portuguese (Brazilian UTF8)','pt_utf8':'Portuguese (UTF8)','ru':'Russian','test':'TEST'}
//
#define LCD_LANGUAGE en

//
// LCD Character Set
//
// Note: This option is NOT applicable to Graphical Displays.
//
// All character-based LCD's provide ASCII plus one of these
// language extensions:
//
//  - JAPANESE ... the most common
//  - WESTERN  ... with more accented characters
//  - CYRILLIC ... for the Russian language
//
// To determine the language extension installed on your controller:
//
//  - Compile and upload with LCD_LANGUAGE set to 'test'
//  - Click the controller to view the LCD menu
//  - The LCD will display Japanese, Western, or Cyrillic text
//
// See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language
//
// :['JAPANESE','WESTERN','CYRILLIC']
//
#define DISPLAY_CHARSET_HD44780 JAPANESE

//
// LCD TYPE
//
// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,
// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels
// (ST7565R family). (This option will be set automatically for certain displays.)
//
// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display!
//                 https://github.com/olikraus/U8glib_Arduino
//
//#define ULTRA_LCD   // Character based
//#define DOGLCD      // Full graphics display

//
// SD CARD
//
// SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work.
//
//#define SDSUPPORT

//
// SD CARD: SPI SPEED
//
// Uncomment ONE of the following items to use a slower SPI transfer
// speed. This is usually required if you're getting volume init errors.
//
//#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED

//
// SD CARD: ENABLE CRC
//
// Use CRC checks and retries on the SD communication.
//
//#define SD_CHECK_AND_RETRY

//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 1

//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 5

/**
 * Encoder Direction Options
 *
 * Test your encoder's behavior first with both options disabled.
 *
 *  Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
 *  Reversed Menu Navigation only?    Enable REVERSE_MENU_DIRECTION.
 *  Reversed Value Editing only?      Enable BOTH options.
 */

//
// This option reverses the encoder direction everywhere
//
//  Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION

//
// This option reverses the encoder direction for navigating LCD menus.
//
//  If CLOCKWISE normally moves DOWN this makes it go UP.
//  If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION

//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
//#define INDIVIDUAL_AXIS_HOMING_MENU

//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER

//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
//  M300 S<frequency Hz> P<duration ms>
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000

//
// CONTROLLER TYPE: Standard
//
// Marlin supports a wide variety of controllers.
// Enable one of the following options to specify your controller.
//

//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER

//
// ULTIPANEL as seen on Thingiverse.
//
#define ULTIPANEL

//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI

//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//
#define PANEL_ONE

//
// MaKr3d Makr-Panel with graphic controller and SD support.
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL

//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// http://panucatt.com
//
//#define VIKI2
//#define miniVIKI

//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER

//
// RepRapDiscount Smart Controller.
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
//#define REPRAP_DISCOUNT_SMART_CONTROLLER

//
// GADGETS3D G3D LCD/SD Controller
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL

//
// RepRapDiscount FULL GRAPHIC Smart Controller
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//
// MakerLab Mini Panel with graphic
// controller and SD support - http://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL

//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0

//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL

//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER

//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//

//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL

//
// Sainsmart YW Robot (LCM1602) LCD Display
//
//#define LCD_I2C_SAINSMART_YWROBOT

//
// Generic LCM1602 LCD adapter
//
//#define LCM1602

//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2

//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI

//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306

//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
  //#define U8GLIB_SSD1306
  #define U8GLIB_SH1106
#endif

//
// CONTROLLER TYPE: Shift register panels
//
// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD

//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0

// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS

// M240  Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
//#define PHOTOGRAPH_PIN     23

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder.
//#define BARICUDA

//define BlinkM/CyzRgb Support
//#define BLINKM

/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/

// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Delay (in microseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY 300

// Servo deactivation
//
// With this option servos are powered only during movement, then turned off to prevent jitter.
//#define DEACTIVATE_SERVOS_AFTER_MOVE

/**********************************************************************\
 * Support for a filament diameter sensor
 * Also allows adjustment of diameter at print time (vs  at slicing)
 * Single extruder only at this point (extruder 0)
 *
 * Motherboards
 * 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
 * 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
 * 301 - Rambo  - uses Analog input 3
 * Note may require analog pins to be defined for different motherboards
 **********************************************************************/
// Uncomment below to enable
//#define FILAMENT_WIDTH_SENSOR

#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75  //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software.  Used for sensor reading validation

#if ENABLED(FILAMENT_WIDTH_SENSOR)
  #define FILAMENT_SENSOR_EXTRUDER_NUM 0   //The number of the extruder that has the filament sensor (0,1,2)
  #define MEASUREMENT_DELAY_CM        14   //measurement delay in cm.  This is the distance from filament sensor to middle of barrel

  #define MEASURED_UPPER_LIMIT         3.30  //upper limit factor used for sensor reading validation in mm
  #define MEASURED_LOWER_LIMIT         1.90  //lower limit factor for sensor reading validation in mm
  #define MAX_MEASUREMENT_DELAY       20     //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM  and lower number saves RAM)

  #define DEFAULT_MEASURED_FILAMENT_DIA  DEFAULT_NOMINAL_FILAMENT_DIA  //set measured to nominal initially

  //When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status.  Status will appear for 5 sec.
  //#define FILAMENT_LCD_DISPLAY
#endif

#include "Configuration_adv.h"
#include "thermistortables.h"

#endif //CONFIGURATION_H
``

@alitai
Copy link
Author

alitai commented Jul 5, 2016

@thinkyhead - I've posted the entire configuration.h above. I've set the debug and will post it as soon as I can.

@alitai
Copy link
Author

alitai commented Jul 5, 2016

Marlin Boot Log

echo:Marlin 1.1.0-RCBugFix
echo: Last Updated: 2016-04-27 12:00 | Author: (none, default config)
Compiled: Jul  5 2016
echo: Free Memory: 4299  PlannerBufferBytes: 1232
echo:Hardcoded Default Settings Loaded
echo:Steps per unit
echo:  M92 X200.00 Y200.00 Z200.00 E865.00
echo:Maximum feedrates (mm/s)
echo:  M203 X200.00 Y200.00 Z200.00 E25.00
echo:Maximum Acceleration (mm/s2)
echo:  M201 X9000 Y9000 Z9000 E10000
echo:Accelerations: P=printing, R=retract and T=travel
echo:  M204 P3000.00 R3000.00 T3000.00
echo:Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)
echo:  M205 S0.00 T0.00 B20000 X20.00 Z20.00 E20.00
echo:Home offset (mm)
echo:  M206 X0.00 Y0.00 Z0.00
echo:Endstop adjustment (mm)
echo:  M666 X0.00 Y0.00 Z0.00
echo:Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]
echo:  M665 L215.00 R105.30 S200.00 A0.00 B0.00 C0.00
echo:Material heatup parameters
echo:  M145 S0 H180 B70 F255
echo:  M145 S1 H240 B100 F255
echo:PID settings
echo:  M301 P34.03 I4.36 D66.34 C100.00 L20
echo:  M304 P679.07 I68.17 D1691.15
echo:Filament settings: Disabled
echo:  M200 D1.75
echo:  M200 D0
echo:Z-Probe Offset (mm)
echo:  M851 Z0.00
N1 M110*34
N2 M115*36
N4 M114*35
N5 M111 S6*98
N6 T0*60
N7 M20*22
N8 M80*19
FIRMWARE_NAME:Marlin 1.1.0-RCBugFix (Github) SOURCE_CODE_URL:https://github.com/MarlinFirmware/Marlin PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mini Kossel EXTRUDER_COUNT:1 UUID:cede2a2f-41a2-4748-9b12-c55c62f367ff
N10 M220 S100*80
N11 M221 S100*80
N12 M111 S6*84
X:0.00 Y:0.00 Z:0.00 E:0.00 Count X: 37490 Y:37490 Z:37490
echo:DEBUG:INFO,ERRORS
echo:Active Extruder: 0
N13 T0*8
echo:DEBUG:INFO,ERRORS
echo:Active Extruder: 0
N14 M111 S32*101
echo:DEBUG:LEVELING
N19 M28*33
No firmware response detected for sd action. Assuming success and continue.

Marlin G28 Log

N23 G28*34
>>> gcode_G28
  reset_bed_level
  (0.00, 0.00, 0.00) setup_for_endstop_or_probe_move > current_position
  (0.00, 0.00, 0.00) sync_plan_position > current_position
  >>> homeaxis(0)
    (0.00, 730.20, 730.20)   sync_plan_position > current_position
    (0.00, 730.20, 730.20)   sync_plan_position > current_position
    > endstops.enable(false)
    > endstops.enable(true)
    (0.00, 730.20, 730.20)   > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    >>> set_axis_is_at_home(0)
    (0.00, 730.20, 730.20)   > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(0)
    (0.00, 730.20, 730.20)   sync_plan_position_delta > current_position
    (0.00, 730.20, 730.20)   > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(0)
  >>> homeaxis(1)
    (0.00, 0.00, 730.20)   sync_plan_position > current_position
    (0.00, 0.00, 730.20)   sync_plan_position > current_position
    > endstops.enable(false)
    > endstops.enable(true)
    (0.00, 0.00, 730.20)   > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    >>> set_axis_is_at_home(1)
    (0.00, 0.00, 730.20)   > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(1)
    (0.00, 0.00, 730.20)   sync_plan_position_delta > current_position
    (0.00, 0.00, 730.20)   > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(1)
  >>> homeaxis(2)
    (0.00, 0.00, 0.00)   sync_plan_position > current_position
    (0.00, 0.00, 0.00)   sync_plan_position > current_position
    > endstops.enable(false)
    > endstops.enable(true)
    (0.00, 0.00, 0.00)   > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    >>> set_axis_is_at_home(2)
    (0.00, 0.00, 243.40)   > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(2)
    (0.00, 0.00, 243.40)   sync_plan_position_delta > current_position
    (0.00, 0.00, 243.40)   > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(2)
  (0.00, 0.00, 243.40) sync_plan_position_delta > current_position
  (0.00, 0.00, 243.40) (DELTA) > current_position
  (0.00, 0.00, 243.40) clean_up_after_endstop_or_probe_move > current_position
<<< gcode_G28
X:0.00 Y:0.00 Z:243.40 E:0.00 Count X: 86170 Y:86170 Z:86170

Marlin G29 Log

N27 G29*39
>>> gcode_G29
  (0.00, 0.00, 243.40) > current_position
  G29 Auto Bed Leveling
  reset_bed_level
  (0.00, 0.00, 243.40) setup_for_endstop_or_probe_move > current_position
  (0.00, 0.00, 243.40) deploy_z_probe > current_position
  do_probe_raise(50.00)
  >>> probe_pt(31.00, -49.00, 1)
    (0.00, 0.00, 243.40) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(31.00, -49.00)
    (31.00, -49.00, 243.40) do_blocking_move_to
    (31.00, -49.00, 243.40) > deploy_z_probe > current_position
    (31.00, -49.00, 243.40) run_z_probe (DELTA) 1 > current_position
    (31.00, -49.00, -10.00) prepare_move_to_destination_raw > destination
    (31.00, -49.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (31.00, -49.00, -0.36) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (31.00, -49.00, 5.00) do_blocking_move_to
    (31.00, -49.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(15.00, -49.00, 1)
    (31.00, -49.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(15.00, -49.00)
    (15.00, -49.00, 5.00) do_blocking_move_to
    (15.00, -49.00, 5.00) > deploy_z_probe > current_position
    (15.00, -49.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (15.00, -49.00, -10.00) prepare_move_to_destination_raw > destination
    (15.00, -49.00, -3.43) run_z_probe (DELTA) 2 > current_position
    (15.00, -49.00, -3.43) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (15.00, -49.00, 5.00) do_blocking_move_to
    (15.00, -49.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-1.00, -49.00, 1)
    (15.00, -49.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-1.00, -49.00)
    (-1.00, -49.00, 5.00) do_blocking_move_to
    (-1.00, -49.00, 5.00) > deploy_z_probe > current_position
    (-1.00, -49.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-1.00, -49.00, -10.00) prepare_move_to_destination_raw > destination
    (-1.00, -49.00, -6.26) run_z_probe (DELTA) 2 > current_position
    (-1.00, -49.00, -6.26) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-1.00, -49.00, 5.00) do_blocking_move_to
    (-1.00, -49.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-17.00, -49.00, 1)
    (-1.00, -49.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-17.00, -49.00)
    (-17.00, -49.00, 5.00) do_blocking_move_to
    (-17.00, -49.00, 5.00) > deploy_z_probe > current_position
    (-17.00, -49.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-17.00, -49.00, -10.00) prepare_move_to_destination_raw > destination
    (-17.00, -49.00, -8.77) run_z_probe (DELTA) 2 > current_position
    (-17.00, -49.00, -8.77) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-17.00, -49.00, 5.00) do_blocking_move_to
    (-17.00, -49.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-33.00, -49.00, 1)
    (-17.00, -49.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-33.00, -49.00)
    (-33.00, -49.00, 5.00) do_blocking_move_to
    (-33.00, -49.00, 5.00) > deploy_z_probe > current_position
    (-33.00, -49.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-33.00, -49.00, -10.00) prepare_move_to_destination_raw > destination
    (-33.00, -49.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-33.00, -49.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-33.00, -49.00, 5.00) do_blocking_move_to
    (-33.00, -49.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-49.00, -33.00, 1)
    (-33.00, -49.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-49.00, -33.00)
    (-49.00, -33.00, 5.00) do_blocking_move_to
    (-49.00, -33.00, 5.00) > deploy_z_probe > current_position
    (-49.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-49.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (-49.00, -33.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-49.00, -33.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-49.00, -33.00, 5.00) do_blocking_move_to
    (-49.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-33.00, -33.00, 1)
    (-49.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-33.00, -33.00)
    (-33.00, -33.00, 5.00) do_blocking_move_to
    (-33.00, -33.00, 5.00) > deploy_z_probe > current_position
    (-33.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-33.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (-33.00, -33.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-33.00, -33.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-33.00, -33.00, 5.00) do_blocking_move_to
    (-33.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-17.00, -33.00, 1)
    (-33.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-17.00, -33.00)
    (-17.00, -33.00, 5.00) do_blocking_move_to
    (-17.00, -33.00, 5.00) > deploy_z_probe > current_position
    (-17.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-17.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (-17.00, -33.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-17.00, -33.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-17.00, -33.00, 5.00) do_blocking_move_to
    (-17.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-1.00, -33.00, 1)
    (-17.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-1.00, -33.00)
    (-1.00, -33.00, 5.00) do_blocking_move_to
    (-1.00, -33.00, 5.00) > deploy_z_probe > current_position
    (-1.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-1.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (-1.00, -33.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-1.00, -33.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-1.00, -33.00, 5.00) do_blocking_move_to
    (-1.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(15.00, -33.00, 1)
    (-1.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(15.00, -33.00)
    (15.00, -33.00, 5.00) do_blocking_move_to
    (15.00, -33.00, 5.00) > deploy_z_probe > current_position
    (15.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (15.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (15.00, -33.00, -8.68) run_z_probe (DELTA) 2 > current_position
    (15.00, -33.00, -8.68) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (15.00, -33.00, 5.00) do_blocking_move_to
    (15.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(31.00, -33.00, 1)
    (15.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(31.00, -33.00)
    (31.00, -33.00, 5.00) do_blocking_move_to
    (31.00, -33.00, 5.00) > deploy_z_probe > current_position
    (31.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (31.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (31.00, -33.00, -5.76) run_z_probe (DELTA) 2 > current_position
    (31.00, -33.00, -5.76) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (31.00, -33.00, 5.00) do_blocking_move_to
    (31.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(47.00, -33.00, 1)
    (31.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(47.00, -33.00)
    (47.00, -33.00, 5.00) do_blocking_move_to
    (47.00, -33.00, 5.00) > deploy_z_probe > current_position
    (47.00, -33.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (47.00, -33.00, -10.00) prepare_move_to_destination_raw > destination
    (47.00, -33.00, -2.58) run_z_probe (DELTA) 2 > current_position
    (47.00, -33.00, -2.58) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (47.00, -33.00, 5.00) do_blocking_move_to
    (47.00, -33.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(47.00, -17.00, 1)
    (47.00, -33.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(47.00, -17.00)
    (47.00, -17.00, 5.00) do_blocking_move_to
    (47.00, -17.00, 5.00) > deploy_z_probe > current_position
    (47.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (47.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (47.00, -17.00, -8.25) run_z_probe (DELTA) 2 > current_position
    (47.00, -17.00, -8.25) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (47.00, -17.00, 5.00) do_blocking_move_to
    (47.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(31.00, -17.00, 1)
    (47.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(31.00, -17.00)
    (31.00, -17.00, 5.00) do_blocking_move_to
    (31.00, -17.00, 5.00) > deploy_z_probe > current_position
    (31.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (31.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (31.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (31.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (31.00, -17.00, 5.00) do_blocking_move_to
    (31.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(15.00, -17.00, 1)
    (31.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(15.00, -17.00)
    (15.00, -17.00, 5.00) do_blocking_move_to
    (15.00, -17.00, 5.00) > deploy_z_probe > current_position
    (15.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (15.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (15.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (15.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (15.00, -17.00, 5.00) do_blocking_move_to
    (15.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-1.00, -17.00, 1)
    (15.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-1.00, -17.00)
    (-1.00, -17.00, 5.00) do_blocking_move_to
    (-1.00, -17.00, 5.00) > deploy_z_probe > current_position
    (-1.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-1.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (-1.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-1.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-1.00, -17.00, 5.00) do_blocking_move_to
    (-1.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-17.00, -17.00, 1)
    (-1.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-17.00, -17.00)
    (-17.00, -17.00, 5.00) do_blocking_move_to
    (-17.00, -17.00, 5.00) > deploy_z_probe > current_position
    (-17.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-17.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (-17.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-17.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-17.00, -17.00, 5.00) do_blocking_move_to
    (-17.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-33.00, -17.00, 1)
    (-17.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-33.00, -17.00)
    (-33.00, -17.00, 5.00) do_blocking_move_to
    (-33.00, -17.00, 5.00) > deploy_z_probe > current_position
    (-33.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-33.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (-33.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-33.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-33.00, -17.00, 5.00) do_blocking_move_to
    (-33.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-49.00, -17.00, 1)
    (-33.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-49.00, -17.00)
    (-49.00, -17.00, 5.00) do_blocking_move_to
    (-49.00, -17.00, 5.00) > deploy_z_probe > current_position
    (-49.00, -17.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-49.00, -17.00, -10.00) prepare_move_to_destination_raw > destination
    (-49.00, -17.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-49.00, -17.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-49.00, -17.00, 5.00) do_blocking_move_to
    (-49.00, -17.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-49.00, -1.00, 1)
    (-49.00, -17.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-49.00, -1.00)
    (-49.00, -1.00, 5.00) do_blocking_move_to
    (-49.00, -1.00, 5.00) > deploy_z_probe > current_position
    (-49.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-49.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (-49.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-49.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-49.00, -1.00, 5.00) do_blocking_move_to
    (-49.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-33.00, -1.00, 1)
    (-49.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-33.00, -1.00)
    (-33.00, -1.00, 5.00) do_blocking_move_to
    (-33.00, -1.00, 5.00) > deploy_z_probe > current_position
    (-33.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-33.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (-33.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-33.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-33.00, -1.00, 5.00) do_blocking_move_to
    (-33.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-17.00, -1.00, 1)
    (-33.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-17.00, -1.00)
    (-17.00, -1.00, 5.00) do_blocking_move_to
    (-17.00, -1.00, 5.00) > deploy_z_probe > current_position
    (-17.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-17.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (-17.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-17.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-17.00, -1.00, 5.00) do_blocking_move_to
    (-17.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(-1.00, -1.00, 1)
    (-17.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(-1.00, -1.00)
    (-1.00, -1.00, 5.00) do_blocking_move_to
    (-1.00, -1.00, 5.00) > deploy_z_probe > current_position
    (-1.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (-1.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (-1.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (-1.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (-1.00, -1.00, 5.00) do_blocking_move_to
    (-1.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(15.00, -1.00, 1)
    (-1.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(15.00, -1.00)
    (15.00, -1.00, 5.00) do_blocking_move_to
    (15.00, -1.00, 5.00) > deploy_z_probe > current_position
    (15.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (15.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (15.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (15.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (15.00, -1.00, 5.00) do_blocking_move_to
    (15.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(31.00, -1.00, 1)
    (15.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(31.00, -1.00)
    (31.00, -1.00, 5.00) do_blocking_move_to
    (31.00, -1.00, 5.00) > deploy_z_probe > current_position
    (31.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (31.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
    (31.00, -1.00, -10.00) run_z_probe (DELTA) 2 > current_position
    (31.00, -1.00, -10.00) sync_plan_position_delta > current_position
    > do_probe_raise
    do_probe_raise(5.00)
    (31.00, -1.00, 5.00) do_blocking_move_to
    (31.00, -1.00, 5.00) prepare_move_to_destination_raw > destination
  <<< probe_pt
  >>> probe_pt(47.00, -1.00, 1)
    (31.00, -1.00, 5.00) > current_position
    do_probe_raise(5.00)
    > do_blocking_move_to_xy(47.00, -1.00)
    (47.00, -1.00, 5.00) do_blocking_move_to
    (47.00, -1.00, 5.00) > deploy_z_probe > current_position
    (47.00, -1.00, 5.00) run_z_probe (DELTA) 1 > current_position
    (47.00, -1.00, -10.00) prepare_move_to_destination_raw > destination
Uploading time: 17667582h:23m:27s
Printer reset detected - initalizing
start

@alitai
Copy link
Author

alitai commented Jul 5, 2016

One point I'd like to add is that when I disable the Auto Bed Leveling Feature (by quoting the line #define AUTO_BED_LEVELING_FEATURE) - the print works great, centered around the x0 y0 z0 point in the middle of the bed.

@alitai
Copy link
Author

alitai commented Jul 6, 2016

I've been running the points as they appear in the log - they are indeed spread evenly on the bed.

I don't know why the actual G29 shifts so they run in a single quadrant. And at a slant...

@Blue-Marlin
Copy link
Contributor

For a test set your Z_RAISE_BETWEEN_PROBINGS to a very high value. 0,0 is usually not a point to probe but the place to go before the first probing. If you touch the bed here the tower coordinate system is messed up.

@Blue-Marlin
Copy link
Contributor

Alternately your MANUAL_Z_HOME_POS could be too high.

@alitai
Copy link
Author

alitai commented Jul 6, 2016

@Blue-Marlin - Thank you - I changed Z_RAISE_BETWEEN_PROBINGS from 5 to 25. While jumping higher between probes - It still touches the x0 y0 z0 point, and then moves to the next point in the negative (-) X direction.

Indeed it looks as if the coordinate system is messed up - but when I printed some items (without G29) and they printed well - and centered. Can the coordinate system be messed up only for ABL?

@alitai
Copy link
Author

alitai commented Jul 6, 2016

@Blue-Marlin - If the MANUAL_Z_HOME_POS would be too high then issuing a G0 Y0 X0 Z0 would touch the bed? It doesn't. I calibrated the printer so the nozzle is paper thickness from the glass bed.

@Blue-Marlin
Copy link
Contributor

Blue-Marlin commented Jul 6, 2016

Not for ABL. Because ABL touches 0,0 unplanned.
However - the code in this area changed last night. Please try the newest RCBugFix.

@alitai
Copy link
Author

alitai commented Jul 6, 2016

I did install the latest today (about 2 hours ago). I'll see if there were any new commits since I last downloaded.

Interesting about having a different coordinates for ABL. How does one go about zeroing XY&Z for ABL?

@thinkyhead
Copy link
Member

thinkyhead commented Jul 6, 2016

Try setting AUTO_BED_LEVELING_GRID_POINTS to a more sane value like 3 or 4.
There's no need to sample 81 points on the bed!

@thinkyhead
Copy link
Member

thinkyhead commented Jul 6, 2016

Can the coordinate system be messed up only for ABL?

ABL takes a given idealized XYZ from your GCode and modifies the XYZ to produce a corrected position based on the tilt of the bed. Since ABL uses only a single tilt across the whole bed, it's important that the sampled points be accurate and that there be very little irregularity in the bed when you probe. Too much irregularity will give strange results.

@Blue-Marlin
Copy link
Contributor

@thinkyhead
He has a delta. Here ABL is more like Mesh-Leveling. No matrix!

@thinkyhead
Copy link
Member

Ah… I'm not too familiar with the difference in Delta leveling.

@alitai
Copy link
Author

alitai commented Jul 7, 2016

@thinkyhead The setting is at 9 points #define AUTO_BED_LEVELING_GRID_POINTS 9. It is similar to what I had before.

@Blue-Marlin ABL worked well on RC6 (the print itself didn't, though) and on a previous Marlin firmware I have been using for more than a year. The Bed is Glass, is rather flat, and the endstops are finely adjusted using a screws so I have a rather well calibrated system (if I say so myself - a 50mm test jig comes out at 50.08mm and symmetric). I use Hiwin rails which make the 1515 rather stable.

Since ABL worked on RC6 - I wonder what had changed since RC6?

@alitai
Copy link
Author

alitai commented Jul 7, 2016

So I made a few movies of running ABL on the Bugfix version (where ABL fails) and the RC6 version (where ABL succeeds).

ABL functioning on RC6: https://vimeo.com/173734690
ABL fails on current (see below) Bugfix version: https://vimeo.com/173734695

A coincidental observation: Something during G29 is screwing up the Delta Coordinates - I stopped shooting the Bugfix movie right as it hit the GT2 belt. So to move it away from the tower I used the motor controls and discovered that the movement plane was completely off - a Y move resulted in a nearly 45 degree slant on Z. After using M28, the move was perfectly flat parallel to the bed plane.

Slanted movement after G29: https://vimeo.com/173734614
Normal movement after G28: https://vimeo.com/173734397

This was shot with an updated firmware - updated to commit 4e84c80 from July 7.

@thinkyhead
Copy link
Member

Would you mind posting the G29 log from 1.1.0-RC6 so I can compare it to the log from RCBugFix? Meanwhile I will look more closely at the code. We did a huge amount of cleanup on bed leveling, and somewhere in the process we clearly overlooked something.

@alitai
Copy link
Author

alitai commented Jul 7, 2016

@thinkyhead Thank you - I will do it in an hour or so when I get back.

@alitai
Copy link
Author

alitai commented Jul 7, 2016

Here is the Log of the G29 from RC6:

RC6 Boot Log

start
echo:Marlin 1.1.0-RC6
echo: Last Updated: 2016-04-24 12:00 | Author: (none, default config)
Compiled: Jul  7 2016
echo: Free Memory: 4285  PlannerBufferBytes: 1232
echo:Hardcoded Default Settings Loaded
echo:Steps per unit:
echo:  M92 X200.00 Y200.00 Z200.00 E865.00
echo:Maximum feedrates (mm/s):
echo:  M203 X200.00 Y200.00 Z200.00 E25.00
echo:Maximum Acceleration (mm/s2):
echo:  M201 X9000 Y9000 Z9000 E10000
echo:Accelerations: P=printing, R=retract and T=travel
echo:  M204 P3000.00 R3000.00 T3000.00
echo:Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)
echo:  M205 S0.00 T0.00 B20000 X20.00 Z20.00 E20.00
echo:Home offset (mm):
echo:  M206 X0.00 Y0.00 Z0.00
echo:Endstop adjustment (mm):
echo:  M666 X0.00 Y0.00 Z0.00
echo:Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]
echo:  M665 L215.00 R105.30 S50.00 A0.00 B0.00 C0.00
echo:Material heatup parameters:
echo:  M145 S0 H180 B70 F255
echo:  M145 S1 H240 B100 F255
echo:PID settings:
echo:  M301 P34.03 I4.36 D66.34 C100.00 L20
echo:  M304 P679.07 I68.17 D1691.15
echo:Filament settings: Disabled
echo:  M200 D1.75
echo:  M200 D0
echo:Z-Probe Offset (mm):
echo:  M851 Z0.00
N1 M110*34
N2 M115*36
N4 M114*35
N5 M111 S6*98
N6 T0*60
N7 M20*22
N8 M80*19
FIRMWARE_NAME:Marlin 1.1.0-RC6 (Github) SOURCE_CODE_URL:https://github.com/MarlinFirmware/Marlin PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mini Kossel EXTRUDER_COUNT:1 UUID:cede2a2f-41a2-4748-9b12-c55c62f367ff
N10 M220 S100*80
N11 M221 S100*80
X:0.00 Y:0.00 Z:0.00 E:0.00 Count X: 37490 Y:37490 Z:37490
N12 M111 S6*84
echo:DEBUG:INFO,ERRORS
echo:Active Extruder: 0
N13 T0*8
echo:DEBUG:INFO,ERRORS
echo:Active Extruder: 0
N30 M111 S32*99
echo:DEBUG:LEVELING

RC6 G28 Log

N33 G28*35
gcode_G28 >>>
  reset_bed_level
  setup_for_endstop_move > enable_endstops(true)
  (0.00, 0.00, 0.00) sync_plan_position > current_position
  >>> homeaxis(0)
  (0.00, 730.20, 730.20)   sync_plan_position > current_position
  (0.00, 730.20, 730.20)   sync_plan_position > current_position
    > enable_endstops(false)
    > enable_endstops(true)
    (0.00, 730.20, 730.20) > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    set_axis_is_at_home(0) >>>
      (0.00, 730.20, 730.20) > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(0)
    (0.00, 730.20, 730.20) sync_plan_position > current_position
    (0.00, 730.20, 730.20) > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(0)
  >>> homeaxis(1)
    (0.00, 0.00, 730.20) sync_plan_position > current_position
    (0.00, 0.00, 730.20) sync_plan_position > current_position
    > enable_endstops(false)
    > enable_endstops(true)
    (0.00, 0.00, 730.20) > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    set_axis_is_at_home(1) >>>
      (0.00, 0.00, 730.20) > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(1)
    (0.00, 0.00, 730.20) sync_plan_position > current_position
    (0.00, 0.00, 730.20) > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(1)
  >>> homeaxis(2)
    (0.00, 0.00, 0.00) sync_plan_position > current_position
    (0.00, 0.00, 0.00) sync_plan_position > current_position
    > enable_endstops(false)
    > enable_endstops(true)
    (0.00, 0.00, 0.00) > TRIGGER ENDSTOP > current_position
    > endstop_adj * axis_home_dir = 0.00
    set_axis_is_at_home(2) >>>
      (0.00, 0.00, 243.40) > home_offset[axis]==0.00 > current_position
    <<< set_axis_is_at_home(2)
    (0.00, 0.00, 243.40) sync_plan_position > current_position
    (0.00, 0.00, 243.40) > AFTER set_axis_is_at_home > current_position
  <<< homeaxis(2)
  (0.00, 0.00, 243.40) sync_plan_position_delta > current_position
  (0.00, 0.00, 243.40) (DELTA) > current_position
  ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)
<<< gcode_G28

RC6 G29 Log

N37 G29*38
gcode_G29 >>>
  (0.00, 0.00, 243.40) > current_position
  G29 Auto Bed Leveling
  reset_bed_level
  (0.00, 0.00, 243.40) deploy_z_probe > current_position
  setup_for_endstop_move > enable_endstops(true)
  z_before = (before) 15.00
  probe_pt >>>
    > ProbeAction:0
    (0.00, 0.00, 243.40) > current_position
    Z Raise to z_before 15.00
    > do_blocking_move_to_z 15.00
    (0.00, 0.00, 15.00) do_blocking_move_to
    (0.00, 0.00, 15.00) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, -53.00
    (32.00, -53.00, 15.00) do_blocking_move_to
    (32.00, -53.00, 15.00) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, -53.00, -10.00) prepare_move_raw > destination
    (32.00, -53.00, -0.25) run_z_probe (DELTA) 2 > current_position
    (32.00, -53.00, -0.25) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.75
  probe_pt >>>
    > ProbeAction:0
    (32.00, -53.00, -0.25) > current_position
    Z Raise to z_before 4.75
    > do_blocking_move_to_z 4.75
    (32.00, -53.00, 4.75) do_blocking_move_to
    (32.00, -53.00, 4.75) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, -53.00
    (15.00, -53.00, 4.75) do_blocking_move_to
    (15.00, -53.00, 4.75) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, -53.00, -10.00) prepare_move_raw > destination
    (15.00, -53.00, -0.26) run_z_probe (DELTA) 2 > current_position
    (15.00, -53.00, -0.26) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.75
  probe_pt >>>
    > ProbeAction:0
    (15.00, -53.00, -0.26) > current_position
    Z Raise to z_before 4.75
    > do_blocking_move_to_z 4.75
    (15.00, -53.00, 4.75) do_blocking_move_to
    (15.00, -53.00, 4.75) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, -53.00
    (-2.00, -53.00, 4.75) do_blocking_move_to
    (-2.00, -53.00, 4.75) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, -53.00, -10.00) prepare_move_raw > destination
    (-2.00, -53.00, -0.53) run_z_probe (DELTA) 2 > current_position
    (-2.00, -53.00, -0.53) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.48
  probe_pt >>>
    > ProbeAction:0
    (-2.00, -53.00, -0.53) > current_position
    Z Raise to z_before 4.48
    > do_blocking_move_to_z 4.48
    (-2.00, -53.00, 4.48) do_blocking_move_to
    (-2.00, -53.00, 4.48) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, -53.00
    (-19.00, -53.00, 4.48) do_blocking_move_to
    (-19.00, -53.00, 4.48) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, -53.00, -10.00) prepare_move_raw > destination
    (-19.00, -53.00, -0.29) run_z_probe (DELTA) 2 > current_position
    (-19.00, -53.00, -0.29) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.71
  probe_pt >>>
    > ProbeAction:0
    (-19.00, -53.00, -0.29) > current_position
    Z Raise to z_before 4.71
    > do_blocking_move_to_z 4.71
    (-19.00, -53.00, 4.71) do_blocking_move_to
    (-19.00, -53.00, 4.71) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, -53.00
    (-36.00, -53.00, 4.71) do_blocking_move_to
    (-36.00, -53.00, 4.71) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, -53.00, -10.00) prepare_move_raw > destination
    (-36.00, -53.00, -0.28) run_z_probe (DELTA) 2 > current_position
    (-36.00, -53.00, -0.28) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.73
  probe_pt >>>
    > ProbeAction:0
    (-36.00, -53.00, -0.28) > current_position
    Z Raise to z_before 4.73
    > do_blocking_move_to_z 4.73
    (-36.00, -53.00, 4.73) do_blocking_move_to
    (-36.00, -53.00, 4.73) prepare_move_raw > destination
    > do_blocking_move_to_xy -53.00, -36.00
    (-53.00, -36.00, 4.73) do_blocking_move_to
    (-53.00, -36.00, 4.73) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-53.00, -36.00, -10.00) prepare_move_raw > destination
    (-53.00, -36.00, -0.32) run_z_probe (DELTA) 2 > current_position
    (-53.00, -36.00, -0.32) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.69
  probe_pt >>>
    > ProbeAction:0
    (-53.00, -36.00, -0.32) > current_position
    Z Raise to z_before 4.69
    > do_blocking_move_to_z 4.69
    (-53.00, -36.00, 4.69) do_blocking_move_to
    (-53.00, -36.00, 4.69) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, -36.00
    (-36.00, -36.00, 4.69) do_blocking_move_to
    (-36.00, -36.00, 4.69) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, -36.00, -10.00) prepare_move_raw > destination
    (-36.00, -36.00, -0.33) run_z_probe (DELTA) 2 > current_position
    (-36.00, -36.00, -0.33) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.67
  probe_pt >>>
    > ProbeAction:0
    (-36.00, -36.00, -0.33) > current_position
    Z Raise to z_before 4.67
    > do_blocking_move_to_z 4.67
    (-36.00, -36.00, 4.67) do_blocking_move_to
    (-36.00, -36.00, 4.67) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, -36.00
    (-19.00, -36.00, 4.67) do_blocking_move_to
    (-19.00, -36.00, 4.67) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, -36.00, -10.00) prepare_move_raw > destination
    (-19.00, -36.00, -0.32) run_z_probe (DELTA) 2 > current_position
    (-19.00, -36.00, -0.32) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.68
  probe_pt >>>
    > ProbeAction:0
    (-19.00, -36.00, -0.32) > current_position
    Z Raise to z_before 4.68
    > do_blocking_move_to_z 4.68
    (-19.00, -36.00, 4.68) do_blocking_move_to
    (-19.00, -36.00, 4.68) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, -36.00
    (-2.00, -36.00, 4.68) do_blocking_move_to
    (-2.00, -36.00, 4.68) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, -36.00, -10.00) prepare_move_raw > destination
    (-2.00, -36.00, -0.30) run_z_probe (DELTA) 2 > current_position
    (-2.00, -36.00, -0.30) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.70
  probe_pt >>>
    > ProbeAction:0
    (-2.00, -36.00, -0.30) > current_position
    Z Raise to z_before 4.70
    > do_blocking_move_to_z 4.70
    (-2.00, -36.00, 4.70) do_blocking_move_to
    (-2.00, -36.00, 4.70) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, -36.00
    (15.00, -36.00, 4.70) do_blocking_move_to
    (15.00, -36.00, 4.70) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, -36.00, -10.00) prepare_move_raw > destination
    (15.00, -36.00, -0.29) run_z_probe (DELTA) 2 > current_position
    (15.00, -36.00, -0.29) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.71
  probe_pt >>>
    > ProbeAction:0
    (15.00, -36.00, -0.29) > current_position
    Z Raise to z_before 4.71
    > do_blocking_move_to_z 4.71
    (15.00, -36.00, 4.71) do_blocking_move_to
    (15.00, -36.00, 4.71) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, -36.00
    (32.00, -36.00, 4.71) do_blocking_move_to
    (32.00, -36.00, 4.71) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, -36.00, -10.00) prepare_move_raw > destination
    (32.00, -36.00, -0.25) run_z_probe (DELTA) 2 > current_position
    (32.00, -36.00, -0.25) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.75
  probe_pt >>>
    > ProbeAction:0
    (32.00, -36.00, -0.25) > current_position
    Z Raise to z_before 4.75
    > do_blocking_move_to_z 4.75
    (32.00, -36.00, 4.75) do_blocking_move_to
    (32.00, -36.00, 4.75) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, -36.00
    (49.00, -36.00, 4.75) do_blocking_move_to
    (49.00, -36.00, 4.75) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, -36.00, -10.00) prepare_move_raw > destination
    (49.00, -36.00, -0.22) run_z_probe (DELTA) 2 > current_position
    (49.00, -36.00, -0.22) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.78
  probe_pt >>>
    > ProbeAction:0
    (49.00, -36.00, -0.22) > current_position
    Z Raise to z_before 4.78
    > do_blocking_move_to_z 4.78
    (49.00, -36.00, 4.78) do_blocking_move_to
    (49.00, -36.00, 4.78) prepare_move_raw > destination
    > do_blocking_move_to_xy 66.00, -19.00
    (66.00, -19.00, 4.78) do_blocking_move_to
    (66.00, -19.00, 4.78) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (66.00, -19.00, -10.00) prepare_move_raw > destination
    (66.00, -19.00, -0.20) run_z_probe (DELTA) 2 > current_position
    (66.00, -19.00, -0.20) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.80
  probe_pt >>>
    > ProbeAction:0
    (66.00, -19.00, -0.20) > current_position
    Z Raise to z_before 4.80
    > do_blocking_move_to_z 4.80
    (66.00, -19.00, 4.80) do_blocking_move_to
    (66.00, -19.00, 4.80) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, -19.00
    (49.00, -19.00, 4.80) do_blocking_move_to
    (49.00, -19.00, 4.80) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, -19.00, -10.00) prepare_move_raw > destination
    (49.00, -19.00, -0.21) run_z_probe (DELTA) 2 > current_position
    (49.00, -19.00, -0.21) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.79
  probe_pt >>>
    > ProbeAction:0
    (49.00, -19.00, -0.21) > current_position
    Z Raise to z_before 4.79
    > do_blocking_move_to_z 4.79
    (49.00, -19.00, 4.79) do_blocking_move_to
    (49.00, -19.00, 4.79) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, -19.00
    (32.00, -19.00, 4.79) do_blocking_move_to
    (32.00, -19.00, 4.79) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, -19.00, -10.00) prepare_move_raw > destination
    (32.00, -19.00, -0.26) run_z_probe (DELTA) 2 > current_position
    (32.00, -19.00, -0.26) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.74
  probe_pt >>>
    > ProbeAction:0
    (32.00, -19.00, -0.26) > current_position
    Z Raise to z_before 4.74
    > do_blocking_move_to_z 4.74
    (32.00, -19.00, 4.74) do_blocking_move_to
    (32.00, -19.00, 4.74) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, -19.00
    (15.00, -19.00, 4.74) do_blocking_move_to
    (15.00, -19.00, 4.74) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, -19.00, -10.00) prepare_move_raw > destination
    (15.00, -19.00, -0.32) run_z_probe (DELTA) 2 > current_position
    (15.00, -19.00, -0.32) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.68
  probe_pt >>>
    > ProbeAction:0
    (15.00, -19.00, -0.32) > current_position
    Z Raise to z_before 4.68
    > do_blocking_move_to_z 4.68
    (15.00, -19.00, 4.68) do_blocking_move_to
    (15.00, -19.00, 4.68) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, -19.00
    (-2.00, -19.00, 4.68) do_blocking_move_to
    (-2.00, -19.00, 4.68) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, -19.00, -10.00) prepare_move_raw > destination
    (-2.00, -19.00, -0.34) run_z_probe (DELTA) 2 > current_position
    (-2.00, -19.00, -0.34) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.66
  probe_pt >>>
    > ProbeAction:0
    (-2.00, -19.00, -0.34) > current_position
    Z Raise to z_before 4.66
    > do_blocking_move_to_z 4.66
    (-2.00, -19.00, 4.66) do_blocking_move_to
    (-2.00, -19.00, 4.66) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, -19.00
    (-19.00, -19.00, 4.66) do_blocking_move_to
    (-19.00, -19.00, 4.66) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, -19.00, -10.00) prepare_move_raw > destination
    (-19.00, -19.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (-19.00, -19.00, -0.36) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.64
  probe_pt >>>
    > ProbeAction:0
    (-19.00, -19.00, -0.36) > current_position
    Z Raise to z_before 4.64
    > do_blocking_move_to_z 4.64
    (-19.00, -19.00, 4.64) do_blocking_move_to
    (-19.00, -19.00, 4.64) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, -19.00
    (-36.00, -19.00, 4.64) do_blocking_move_to
    (-36.00, -19.00, 4.64) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, -19.00, -10.00) prepare_move_raw > destination
    (-36.00, -19.00, -0.32) run_z_probe (DELTA) 2 > current_position
    (-36.00, -19.00, -0.32) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.68
  probe_pt >>>
    > ProbeAction:0
    (-36.00, -19.00, -0.32) > current_position
    Z Raise to z_before 4.68
    > do_blocking_move_to_z 4.68
    (-36.00, -19.00, 4.68) do_blocking_move_to
    (-36.00, -19.00, 4.68) prepare_move_raw > destination
    > do_blocking_move_to_xy -53.00, -19.00
    (-53.00, -19.00, 4.68) do_blocking_move_to
    (-53.00, -19.00, 4.68) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-53.00, -19.00, -10.00) prepare_move_raw > destination
    (-53.00, -19.00, -0.30) run_z_probe (DELTA) 2 > current_position
    (-53.00, -19.00, -0.30) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.70
  probe_pt >>>
    > ProbeAction:0
    (-53.00, -19.00, -0.30) > current_position
    Z Raise to z_before 4.70
    > do_blocking_move_to_z 4.70
    (-53.00, -19.00, 4.70) do_blocking_move_to
    (-53.00, -19.00, 4.70) prepare_move_raw > destination
    > do_blocking_move_to_xy -53.00, -2.00
    (-53.00, -2.00, 4.70) do_blocking_move_to
    (-53.00, -2.00, 4.70) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-53.00, -2.00, -10.00) prepare_move_raw > destination
    (-53.00, -2.00, -0.26) run_z_probe (DELTA) 2 > current_position
    (-53.00, -2.00, -0.26) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.74
  probe_pt >>>
    > ProbeAction:0
    (-53.00, -2.00, -0.26) > current_position
    Z Raise to z_before 4.74
    > do_blocking_move_to_z 4.74
    (-53.00, -2.00, 4.74) do_blocking_move_to
    (-53.00, -2.00, 4.74) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, -2.00
    (-36.00, -2.00, 4.74) do_blocking_move_to
    (-36.00, -2.00, 4.74) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, -2.00, -10.00) prepare_move_raw > destination
    (-36.00, -2.00, -0.37) run_z_probe (DELTA) 2 > current_position
    (-36.00, -2.00, -0.37) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.63
  probe_pt >>>
    > ProbeAction:0
    (-36.00, -2.00, -0.37) > current_position
    Z Raise to z_before 4.63
    > do_blocking_move_to_z 4.63
    (-36.00, -2.00, 4.63) do_blocking_move_to
    (-36.00, -2.00, 4.63) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, -2.00
    (-19.00, -2.00, 4.63) do_blocking_move_to
    (-19.00, -2.00, 4.63) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, -2.00, -10.00) prepare_move_raw > destination
    (-19.00, -2.00, -0.41) run_z_probe (DELTA) 2 > current_position
    (-19.00, -2.00, -0.41) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.59
  probe_pt >>>
    > ProbeAction:0
    (-19.00, -2.00, -0.41) > current_position
    Z Raise to z_before 4.59
    > do_blocking_move_to_z 4.59
    (-19.00, -2.00, 4.59) do_blocking_move_to
    (-19.00, -2.00, 4.59) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, -2.00
    (-2.00, -2.00, 4.59) do_blocking_move_to
    (-2.00, -2.00, 4.59) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, -2.00, -10.00) prepare_move_raw > destination
    (-2.00, -2.00, -0.41) run_z_probe (DELTA) 2 > current_position
    (-2.00, -2.00, -0.41) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.59
  probe_pt >>>
    > ProbeAction:0
    (-2.00, -2.00, -0.41) > current_position
    Z Raise to z_before 4.59
    > do_blocking_move_to_z 4.59
    (-2.00, -2.00, 4.59) do_blocking_move_to
    (-2.00, -2.00, 4.59) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, -2.00
    (15.00, -2.00, 4.59) do_blocking_move_to
    (15.00, -2.00, 4.59) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, -2.00, -10.00) prepare_move_raw > destination
    (15.00, -2.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (15.00, -2.00, -0.36) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.64
  probe_pt >>>
    > ProbeAction:0
    (15.00, -2.00, -0.36) > current_position
    Z Raise to z_before 4.64
    > do_blocking_move_to_z 4.64
    (15.00, -2.00, 4.64) do_blocking_move_to
    (15.00, -2.00, 4.64) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, -2.00
    (32.00, -2.00, 4.64) do_blocking_move_to
    (32.00, -2.00, 4.64) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, -2.00, -10.00) prepare_move_raw > destination
    (32.00, -2.00, -0.31) run_z_probe (DELTA) 2 > current_position
    (32.00, -2.00, -0.31) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.69
  probe_pt >>>
    > ProbeAction:0
    (32.00, -2.00, -0.31) > current_position
    Z Raise to z_before 4.69
    > do_blocking_move_to_z 4.69
    (32.00, -2.00, 4.69) do_blocking_move_to
    (32.00, -2.00, 4.69) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, -2.00
    (49.00, -2.00, 4.69) do_blocking_move_to
    (49.00, -2.00, 4.69) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, -2.00, -10.00) prepare_move_raw > destination
    (49.00, -2.00, -0.28) run_z_probe (DELTA) 2 > current_position
    (49.00, -2.00, -0.28) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.72
  probe_pt >>>
    > ProbeAction:0
    (49.00, -2.00, -0.28) > current_position
    Z Raise to z_before 4.72
    > do_blocking_move_to_z 4.72
    (49.00, -2.00, 4.72) do_blocking_move_to
    (49.00, -2.00, 4.72) prepare_move_raw > destination
    > do_blocking_move_to_xy 66.00, -2.00
    (66.00, -2.00, 4.72) do_blocking_move_to
    (66.00, -2.00, 4.72) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (66.00, -2.00, -10.00) prepare_move_raw > destination
    (66.00, -2.00, -0.16) run_z_probe (DELTA) 2 > current_position
    (66.00, -2.00, -0.16) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.84
  probe_pt >>>
    > ProbeAction:0
    (66.00, -2.00, -0.16) > current_position
    Z Raise to z_before 4.84
    > do_blocking_move_to_z 4.84
    (66.00, -2.00, 4.84) do_blocking_move_to
    (66.00, -2.00, 4.84) prepare_move_raw > destination
    > do_blocking_move_to_xy 66.00, 15.00
    (66.00, 15.00, 4.84) do_blocking_move_to
    (66.00, 15.00, 4.84) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (66.00, 15.00, -10.00) prepare_move_raw > destination
    (66.00, 15.00, -0.20) run_z_probe (DELTA) 2 > current_position
    (66.00, 15.00, -0.20) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.80
  probe_pt >>>
    > ProbeAction:0
    (66.00, 15.00, -0.20) > current_position
    Z Raise to z_before 4.80
    > do_blocking_move_to_z 4.80
    (66.00, 15.00, 4.80) do_blocking_move_to
    (66.00, 15.00, 4.80) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, 15.00
    (49.00, 15.00, 4.80) do_blocking_move_to
    (49.00, 15.00, 4.80) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, 15.00, -10.00) prepare_move_raw > destination
    (49.00, 15.00, -0.25) run_z_probe (DELTA) 2 > current_position
    (49.00, 15.00, -0.25) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.75
  probe_pt >>>
    > ProbeAction:0
    (49.00, 15.00, -0.25) > current_position
    Z Raise to z_before 4.75
    > do_blocking_move_to_z 4.75
    (49.00, 15.00, 4.75) do_blocking_move_to
    (49.00, 15.00, 4.75) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, 15.00
    (32.00, 15.00, 4.75) do_blocking_move_to
    (32.00, 15.00, 4.75) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, 15.00, -10.00) prepare_move_raw > destination
    (32.00, 15.00, -0.34) run_z_probe (DELTA) 2 > current_position
    (32.00, 15.00, -0.34) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.66
  probe_pt >>>
    > ProbeAction:0
    (32.00, 15.00, -0.34) > current_position
    Z Raise to z_before 4.66
    > do_blocking_move_to_z 4.66
    (32.00, 15.00, 4.66) do_blocking_move_to
    (32.00, 15.00, 4.66) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, 15.00
    (15.00, 15.00, 4.66) do_blocking_move_to
    (15.00, 15.00, 4.66) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, 15.00, -10.00) prepare_move_raw > destination
    (15.00, 15.00, -0.38) run_z_probe (DELTA) 2 > current_position
    (15.00, 15.00, -0.38) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.62
  probe_pt >>>
    > ProbeAction:0
    (15.00, 15.00, -0.38) > current_position
    Z Raise to z_before 4.62
    > do_blocking_move_to_z 4.62
    (15.00, 15.00, 4.62) do_blocking_move_to
    (15.00, 15.00, 4.62) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, 15.00
    (-2.00, 15.00, 4.62) do_blocking_move_to
    (-2.00, 15.00, 4.62) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, 15.00, -10.00) prepare_move_raw > destination
    (-2.00, 15.00, -0.41) run_z_probe (DELTA) 2 > current_position
    (-2.00, 15.00, -0.41) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.59
  probe_pt >>>
    > ProbeAction:0
    (-2.00, 15.00, -0.41) > current_position
    Z Raise to z_before 4.59
    > do_blocking_move_to_z 4.59
    (-2.00, 15.00, 4.59) do_blocking_move_to
    (-2.00, 15.00, 4.59) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, 15.00
    (-19.00, 15.00, 4.59) do_blocking_move_to
    (-19.00, 15.00, 4.59) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, 15.00, -10.00) prepare_move_raw > destination
    (-19.00, 15.00, -0.38) run_z_probe (DELTA) 2 > current_position
    (-19.00, 15.00, -0.38) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.62
  probe_pt >>>
    > ProbeAction:0
    (-19.00, 15.00, -0.38) > current_position
    Z Raise to z_before 4.62
    > do_blocking_move_to_z 4.62
    (-19.00, 15.00, 4.62) do_blocking_move_to
    (-19.00, 15.00, 4.62) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, 15.00
    (-36.00, 15.00, 4.62) do_blocking_move_to
    (-36.00, 15.00, 4.62) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, 15.00, -10.00) prepare_move_raw > destination
    (-36.00, 15.00, -0.35) run_z_probe (DELTA) 2 > current_position
    (-36.00, 15.00, -0.35) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.65
  probe_pt >>>
    > ProbeAction:0
    (-36.00, 15.00, -0.35) > current_position
    Z Raise to z_before 4.65
    > do_blocking_move_to_z 4.65
    (-36.00, 15.00, 4.65) do_blocking_move_to
    (-36.00, 15.00, 4.65) prepare_move_raw > destination
    > do_blocking_move_to_xy -53.00, 15.00
    (-53.00, 15.00, 4.65) do_blocking_move_to
    (-53.00, 15.00, 4.65) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-53.00, 15.00, -10.00) prepare_move_raw > destination
    (-53.00, 15.00, -0.27) run_z_probe (DELTA) 2 > current_position
    (-53.00, 15.00, -0.27) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.73
  probe_pt >>>
    > ProbeAction:0
    (-53.00, 15.00, -0.27) > current_position
    Z Raise to z_before 4.73
    > do_blocking_move_to_z 4.73
    (-53.00, 15.00, 4.73) do_blocking_move_to
    (-53.00, 15.00, 4.73) prepare_move_raw > destination
    > do_blocking_move_to_xy -53.00, 32.00
    (-53.00, 32.00, 4.73) do_blocking_move_to
    (-53.00, 32.00, 4.73) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-53.00, 32.00, -10.00) prepare_move_raw > destination
    (-53.00, 32.00, -0.22) run_z_probe (DELTA) 2 > current_position
    (-53.00, 32.00, -0.22) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.78
  probe_pt >>>
    > ProbeAction:0
    (-53.00, 32.00, -0.22) > current_position
    Z Raise to z_before 4.78
    > do_blocking_move_to_z 4.78
    (-53.00, 32.00, 4.78) do_blocking_move_to
    (-53.00, 32.00, 4.78) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, 32.00
    (-36.00, 32.00, 4.78) do_blocking_move_to
    (-36.00, 32.00, 4.78) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, 32.00, -10.00) prepare_move_raw > destination
    (-36.00, 32.00, -0.34) run_z_probe (DELTA) 2 > current_position
    (-36.00, 32.00, -0.34) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.67
  probe_pt >>>
    > ProbeAction:0
    (-36.00, 32.00, -0.34) > current_position
    Z Raise to z_before 4.67
    > do_blocking_move_to_z 4.67
    (-36.00, 32.00, 4.67) do_blocking_move_to
    (-36.00, 32.00, 4.67) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, 32.00
    (-19.00, 32.00, 4.67) do_blocking_move_to
    (-19.00, 32.00, 4.67) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, 32.00, -10.00) prepare_move_raw > destination
    (-19.00, 32.00, -0.38) run_z_probe (DELTA) 2 > current_position
    (-19.00, 32.00, -0.38) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.62
  probe_pt >>>
    > ProbeAction:0
    (-19.00, 32.00, -0.38) > current_position
    Z Raise to z_before 4.62
    > do_blocking_move_to_z 4.62
    (-19.00, 32.00, 4.62) do_blocking_move_to
    (-19.00, 32.00, 4.62) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, 32.00
    (-2.00, 32.00, 4.62) do_blocking_move_to
    (-2.00, 32.00, 4.62) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, 32.00, -10.00) prepare_move_raw > destination
    (-2.00, 32.00, -0.40) run_z_probe (DELTA) 2 > current_position
    (-2.00, 32.00, -0.40) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.60
  probe_pt >>>
    > ProbeAction:0
    (-2.00, 32.00, -0.40) > current_position
    Z Raise to z_before 4.60
    > do_blocking_move_to_z 4.60
    (-2.00, 32.00, 4.60) do_blocking_move_to
    (-2.00, 32.00, 4.60) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, 32.00
    (15.00, 32.00, 4.60) do_blocking_move_to
    (15.00, 32.00, 4.60) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, 32.00, -10.00) prepare_move_raw > destination
    (15.00, 32.00, -0.39) run_z_probe (DELTA) 2 > current_position
    (15.00, 32.00, -0.39) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.61
  probe_pt >>>
    > ProbeAction:0
    (15.00, 32.00, -0.39) > current_position
    Z Raise to z_before 4.61
    > do_blocking_move_to_z 4.61
    (15.00, 32.00, 4.61) do_blocking_move_to
    (15.00, 32.00, 4.61) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, 32.00
    (32.00, 32.00, 4.61) do_blocking_move_to
    (32.00, 32.00, 4.61) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, 32.00, -10.00) prepare_move_raw > destination
    (32.00, 32.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (32.00, 32.00, -0.36) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.65
  probe_pt >>>
    > ProbeAction:0
    (32.00, 32.00, -0.36) > current_position
    Z Raise to z_before 4.65
    > do_blocking_move_to_z 4.65
    (32.00, 32.00, 4.65) do_blocking_move_to
    (32.00, 32.00, 4.65) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, 32.00
    (49.00, 32.00, 4.65) do_blocking_move_to
    (49.00, 32.00, 4.65) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, 32.00, -10.00) prepare_move_raw > destination
    (49.00, 32.00, -0.26) run_z_probe (DELTA) 2 > current_position
    (49.00, 32.00, -0.26) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.74
  probe_pt >>>
    > ProbeAction:0
    (49.00, 32.00, -0.26) > current_position
    Z Raise to z_before 4.74
    > do_blocking_move_to_z 4.74
    (49.00, 32.00, 4.74) do_blocking_move_to
    (49.00, 32.00, 4.74) prepare_move_raw > destination
    > do_blocking_move_to_xy 49.00, 49.00
    (49.00, 49.00, 4.74) do_blocking_move_to
    (49.00, 49.00, 4.74) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (49.00, 49.00, -10.00) prepare_move_raw > destination
    (49.00, 49.00, -0.27) run_z_probe (DELTA) 2 > current_position
    (49.00, 49.00, -0.27) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.73
  probe_pt >>>
    > ProbeAction:0
    (49.00, 49.00, -0.27) > current_position
    Z Raise to z_before 4.73
    > do_blocking_move_to_z 4.73
    (49.00, 49.00, 4.73) do_blocking_move_to
    (49.00, 49.00, 4.73) prepare_move_raw > destination
    > do_blocking_move_to_xy 32.00, 49.00
    (32.00, 49.00, 4.73) do_blocking_move_to
    (32.00, 49.00, 4.73) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (32.00, 49.00, -10.00) prepare_move_raw > destination
    (32.00, 49.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (32.00, 49.00, -0.36) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.64
  probe_pt >>>
  > ProbeAction:0
    (32.00, 49.00, -0.36) > current_position
    Z Raise to z_before 4.64
    > do_blocking_move_to_z 4.64
    (32.00, 49.00, 4.64) do_blocking_move_to
    (32.00, 49.00, 4.64) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, 49.00
    (15.00, 49.00, 4.64) do_blocking_move_to
    (15.00, 49.00, 4.64) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, 49.00, -10.00) prepare_move_raw > destination
    (15.00, 49.00, -0.39) run_z_probe (DELTA) 2 > current_position
    (15.00, 49.00, -0.39) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.61
  probe_pt >>>
    > ProbeAction:0
    (15.00, 49.00, -0.39) > current_position
    Z Raise to z_before 4.61
    > do_blocking_move_to_z 4.61
    (15.00, 49.00, 4.61) do_blocking_move_to
    (15.00, 49.00, 4.61) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, 49.00
    (-2.00, 49.00, 4.61) do_blocking_move_to
    (-2.00, 49.00, 4.61) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, 49.00, -10.00) prepare_move_raw > destination
    (-2.00, 49.00, -0.36) run_z_probe (DELTA) 2 > current_position
    (-2.00, 49.00, -0.36) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.64
  probe_pt >>>
    > ProbeAction:0
    (-2.00, 49.00, -0.36) > current_position
    Z Raise to z_before 4.64
    > do_blocking_move_to_z 4.64
    (-2.00, 49.00, 4.64) do_blocking_move_to
    (-2.00, 49.00, 4.64) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, 49.00
    (-19.00, 49.00, 4.64) do_blocking_move_to
    (-19.00, 49.00, 4.64) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, 49.00, -10.00) prepare_move_raw > destination
    (-19.00, 49.00, -0.34) run_z_probe (DELTA) 2 > current_position
    (-19.00, 49.00, -0.34) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.67
  probe_pt >>>
    > ProbeAction:0
    (-19.00, 49.00, -0.34) > current_position
    Z Raise to z_before 4.67
    > do_blocking_move_to_z 4.67
    (-19.00, 49.00, 4.67) do_blocking_move_to
    (-19.00, 49.00, 4.67) prepare_move_raw > destination
    > do_blocking_move_to_xy -36.00, 49.00
    (-36.00, 49.00, 4.67) do_blocking_move_to
    (-36.00, 49.00, 4.67) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-36.00, 49.00, -10.00) prepare_move_raw > destination
    (-36.00, 49.00, -0.28) run_z_probe (DELTA) 2 > current_position
    (-36.00, 49.00, -0.28) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.72
  probe_pt >>>
    > ProbeAction:0
    (-36.00, 49.00, -0.28) > current_position
    Z Raise to z_before 4.72
    > do_blocking_move_to_z 4.72
    (-36.00, 49.00, 4.72) do_blocking_move_to
    (-36.00, 49.00, 4.72) prepare_move_raw > destination
    > do_blocking_move_to_xy -19.00, 66.00
    (-19.00, 66.00, 4.72) do_blocking_move_to
    (-19.00, 66.00, 4.72) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-19.00, 66.00, -10.00) prepare_move_raw > destination
    (-19.00, 66.00, -0.28) run_z_probe (DELTA) 2 > current_position
    (-19.00, 66.00, -0.28) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.72
  probe_pt >>>
    > ProbeAction:0
    (-19.00, 66.00, -0.28) > current_position
    Z Raise to z_before 4.72
    > do_blocking_move_to_z 4.72
    (-19.00, 66.00, 4.72) do_blocking_move_to
    (-19.00, 66.00, 4.72) prepare_move_raw > destination
    > do_blocking_move_to_xy -2.00, 66.00
    (-2.00, 66.00, 4.72) do_blocking_move_to
    (-2.00, 66.00, 4.72) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (-2.00, 66.00, -10.00) prepare_move_raw > destination
    (-2.00, 66.00, -0.34) run_z_probe (DELTA) 2 > current_position
    (-2.00, 66.00, -0.34) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.66
  probe_pt >>>
    > ProbeAction:0
    (-2.00, 66.00, -0.34) > current_position
    Z Raise to z_before 4.66
    > do_blocking_move_to_z 4.66
    (-2.00, 66.00, 4.66) do_blocking_move_to
    (-2.00, 66.00, 4.66) prepare_move_raw > destination
    > do_blocking_move_to_xy 15.00, 66.00
    (15.00, 66.00, 4.66) do_blocking_move_to
    (15.00, 66.00, 4.66) prepare_move_raw > destination
    run_z_probe (DELTA) 1
    (15.00, 66.00, -10.00) prepare_move_raw > destination
    (15.00, 66.00, -0.37) run_z_probe (DELTA) 2 > current_position
    (15.00, 66.00, -0.37) sync_plan_position_delta > current_position
  <<< probe_pt
  z_before = (between) 4.63
  (15.00, 66.00, -0.37) > probing complete > current_position
  clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()
  -0.26 -0.23 -0.22 -0.25 -0.75 -0.22 -0.21 -0.21 -0.21
  -0.32 -0.30 -0.28 -0.29 -0.53 -0.26 -0.25 -0.23 -0.19
  -0.30 -0.32 -0.33 -0.32 -0.30 -0.29 -0.25 -0.22 -0.20
  -0.27 -0.30 -0.32 -0.36 -0.34 -0.32 -0.26 -0.21 -0.20
  -0.15 -0.26 -0.37 -0.41 -0.41 -0.36 -0.31 -0.28 -0.16
  -0.19 -0.27 -0.35 -0.38 -0.41 -0.38 -0.34 -0.25 -0.20
  -0.17 -0.22 -0.34 -0.38 -0.40 -0.39 -0.36 -0.26 -0.18
  -0.15 -0.23 -0.28 -0.34 -0.36 -0.39 -0.36 -0.27 -0.18
  -0.13 -0.19 -0.23 -0.28 -0.34 -0.37 -0.37 -0.33 -0.18
  (15.00, 66.00, 49.63) do_blocking_move_to
  (15.00, 66.00, 49.63) prepare_move_raw > destination
<<< gcode_G29

@thinkyhead
Copy link
Member

From the video it looks like a weird assortment of probe points. Are they all within a single quadrant of the bed, or does it probe elsewhere?

Are you using the same Configuration.h file for RCBugFix as you are using for RC6, or did you modify it a bit?

@thinkyhead
Copy link
Member

thinkyhead commented Jul 7, 2016

So far in my examination of the G29 code nothing is jumping out as an obvious bug. I think it must be someplace in-between, maybe.

  • If you do a normal G28 before anything else and then send movement commands, does the delta go to all the right positions?
  • When you do the G29 leveling procedure does the LCD show the correct X, Y, Z coordinates?

This is making me think it would be nice to have an LCD option to cancel G29 leveling in-progress.

@thinkyhead
Copy link
Member

thinkyhead commented Jul 8, 2016

@alitai I've created a branch for testing where I can add more logging to figure this out. I already did a few tweaks to it, so give it a try and see if it works any differently:

https://github.com/thinkyhead/Marlin/tree/th_delta_debug_homing_leveling

I will add more logging to that if needed, and hopefully we'll figure it out quickly.

@alitai
Copy link
Author

alitai commented Jul 8, 2016

@thinkyhead

  1. It seems to work in one quadrant only. I can't let it finish as it hits one of the towers.
  2. I always do a G28 prior to any G29 (just to be safe! My concern is hitting the bed prior to probing).
  3. The movie above Normal movement after G28: https://vimeo.com/173734397 - shows that it works very well without a G29 - moving parallel to the bed in the Y direction. Just finished printing a sink stopper from flexible PLA and it printed very well.

@alitai
Copy link
Author

alitai commented Jul 8, 2016

I actually tried to use the same Configuration.h. But the one I use now is different - there are quite a few differences between the RC6 and the Bugfix files - Hitachi character set was changed from Japan to Japanese; there were additional Z probe Raise parameters in RC6 that don't exist in the Bugfix, etc.

@alitai
Copy link
Author

alitai commented Jul 8, 2016

@thinkyhead So I looked at the LCD - Indeed there is a mismatch between the LCD and where the effector/hotend is. For example, it starts off at Y=-49 (which should be close to the edge of the bed) - but the effector is at Y=0.

So the first probe should be X=31 Y=-49 but it ends up being X=0 Y=0.

@thinkyhead
Copy link
Member

thinkyhead commented Jul 10, 2016

@AnHardt Another change we made recently was - for deltas that had a specific (50, 100, 150) Z-before-probing value, the effector would move down to that coordinate. But now we don't move down, only up, so we might have lost that initial move. (Or, with delta and/or Z max machines, I might have made an exception and still lower to that point.) I'll have to peek at the code to remind myself. Anyway, perhaps that initial lowering is helpful.

@alitai
Copy link
Author

alitai commented Jul 10, 2016

@alitai Can you give a test of the probing commands outside of G29 to see that they do the right thing?

  • G30 - Single Z probe, probes bed at current XY location.
  • M401 - Lower Z probe if present
  • M402 - Raise Z probe if present
    Meanwhile I will try to figure out someplace where added logging might help reveal something.<

So I probed at a few points outside the quadrant the ABL is stuck in such as x-35 and y-35 and it worked well. The nozzle touched the bed at the proper location - and returned properly.

@alitai
Copy link
Author

alitai commented Jul 10, 2016

For

a test we could ask for adding an endstop_adj of a few mm to all axes to free the endstops before another move can happen. Or we could simply try:

G28
G91
G0 Z-10
G90
G29<

I tried this - It doesn't solve the problem - what should I be looking for?

@AnHardt
Copy link
Member

AnHardt commented Jul 10, 2016

I hoped for a straight correct move from [0,0,z_max-x] to the first probe point in G29 with x bigger than a few 1/10mm. :-(
Did we already talk about ENDSTOPS_ONLY_FOR_HOMING (Configuration_adv.h)? Please alter it and test again.

@alitai
Copy link
Author

alitai commented Jul 10, 2016

Tried quoting out -

//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing

And it made no difference. :-(

@AnHardt
Copy link
Member

AnHardt commented Jul 10, 2016

Ok. Let's see what's going on.
AnHardt#56
Not as beauty(ful) as thinkyhead could have done it, but hopefully i can see what when is going on.

@thinkyhead
Copy link
Member

@alitai Did you have a chance to test the debug code @AnHardt has provided?

@alitai
Copy link
Author

alitai commented Jul 13, 2016

@thinkyhead @AnHardt I do apologize. I am rather new on GitHub and didn't know that the AnHardt#56 was a build for me to try. I was actually looking at this thread daily for the next set of instructions. I will test this later today.

@alitai
Copy link
Author

alitai commented Jul 13, 2016

I am not sure how to use this. I tried showing the code for commit AnHardt#56 as full code and downloading it. Added it to the RCBugFix and to the AnHardt code tab download - and in both cases got a "conflicting decleration 'volatile boot_wait_for_heatup'" compiler error.

In the main AnHardt code tab - I don't see the report_current_position() calls that the #56 has...

@alitai
Copy link
Author

alitai commented Jul 13, 2016

Tried quoting out the lines that compiler was unhappy with and made it even less happy...

I guess the question is how do I find and download the code that goes with the #56 commit?

@thinkyhead
Copy link
Member

thinkyhead commented Jul 13, 2016

@alitai At the top, notice that the name of the branch that AnHardt#56 comes from is rep-pos-delta-G29 (https://github.com/AnHardt/Marlin/tree/rep-pos-delta-G29). Download the ZIP from there, or you can check it out with Github Desktop, if you have that installed.

@alitai
Copy link
Author

alitai commented Jul 13, 2016

@thinkyhead - Thank you - downloaded it and it worked. Posted the log and configuration.h into the AnHardt#56 message.

BTW - On a side note, the configuration.h version may need to change as CONFIGURATION_H_VERSION 010100 no longer compiles with the code. Missing some declarations.

@alitai
Copy link
Author

alitai commented Jul 13, 2016

@AnHardt figured it out - the effector is trying to move to the initial point while still homed. So the carriages hit the endpoints. A move to point X:31.00 Y:-49.00 Z:243.70 E:0.00 Count X: 86168 Y:86248 Z:85995 remains at X:0 Y:0....

In the past, the effector used to go down prior to probing. Is that settable in configuration.h?

There is a workaround for now - running:
G28
G0 Z100
G29

works, and completes a full G29 cycle.

Thank you @AnHardt, @thinkyhead, @Roxy-3D and @Blue-Marlin for all your help - you guys are awesome.

@alitai
Copy link
Author

alitai commented Jul 13, 2016

Should I close this issue - or should we close it only after the issue is resolved in code (or configuration)?

@alitai
Copy link
Author

alitai commented Jul 14, 2016

@AnHardt - I apologize again - You had asked about this before–

For a test we could ask for adding an endstop_adj of a few mm to all axes to free the endstops before another move can happen. Or we could simply try:

G28
G91
G0 Z-10
G90
G29

Only now do I see what you meant - when the effector tries to get to the coordinates it does hit the endstops. you were on to the problem 4 days ago...

@thinkyhead
Copy link
Member

thinkyhead commented Jul 14, 2016

the effector used to go down prior to probing

Yes, this was recently (unintentionally) changed. It was assumed that the initial height (Z_RAISE_BEFORE_PROBING) was purely for probe deployment, and that movement to the first XY point would occur afterward, or at least the Z move would occur before the XY move.

Clearly on a DELTA the initial "raise" still needs to be applied even if it is lower. The do_blocking_move_to function doesn't help delta probing, unfortunately, because it only avoids XY moves before Z moves when raising Z. Perhaps we should make the Z move logic in do_blocking_move_to the point of exception for DELTA. (Always move Z before XY with DELTA).

@thinkyhead
Copy link
Member

thinkyhead commented Jul 14, 2016

#4303 is almost the right idea, but....

Background: I believe the upper part of a delta's total build volume is actually a cone, so the full volume looks like a pointy rocket. Marlin currently supports making full use of that limited upper-region of the build area, as long as you don't try to move any of the carriages beyond their upper limit. So you can print a taller Chrysler Building than a cylinder.

That said (and apropos of the corporate engineering lab) I think it's good to place safety margins. But… I think enforcing a fixed height based on where the nozzle can reach the outer edge is probably too strict.

Compare to software endstops on a nice square Cartesian. They are easy to enforce, but ultimately meaningless on a delta. Instead with a delta we have to constrain based on the radius (fortunately no sqrt is required for the test phase). We can account for the upper conical region, which starts at the full radius at the safe-distance figured in #4303, and descends linearly to a single point at the Z_MAX position). Then when "clamping", we move the nozzle towards the center (also linear - no need for sin/cos).

static float get max_cylinder_z() { . . . } // highest Z with usable full radius

/**
 * Like clamp_to_software_endstops, but for delta moves.
 * Alters the xyz before use so hi and lo level axes are in sync.
 * Constrain totally screws up your print in progress, so slice with care!
 */
void clamp_to_delta_volume(float &xyz[NUM_AXIS]) {
  static float max_cylinder_z = get_max_cylinder_z(); // can rod trim change this?
  float max_radius = delta_radius; // the full usable radius
  // above the max cylinder z? (only needs recalculation as Z changes)
  if (xyz[Z_AXIS] > max_cylinder_z) {
    // proportion at Z [e.g., 1-(110-100)/(150-100)==1-1/5==0.8]
    max_radius *= 1.0 - (xyz[Z_AXIS] - max_cylinder_z) / (Z_MAX_POS - max_cylinder_z);
  }
  // point outside the radius?
  float r2 = sq(xyz[X_AXIS] - CENTER_X) + sq(xyz[Y_AXIS] - CENTER_Y);
  if (r2 > sq(max_radius)) {
    float prop = sqrt(r2) / max_radius;
    xyz[X_AXIS] = CENTER_X + (xyz[X_AXIS] - CENTER_X) * prop;
    xyz[Y_AXIS] = CENTER_Y + (xyz[Y_AXIS] - CENTER_Y) * prop;
  }
}

@jbrazio jbrazio modified the milestone: 1.1.0 Jul 16, 2016
@jbrazio
Copy link
Contributor

jbrazio commented Jul 23, 2016

@thinkyhead since #4303 is merged, can we close this ?

@alitai
Copy link
Author

alitai commented Aug 10, 2016

RC7 works really well on my Mini Kossel G28 followed by G29 work without hitting the endstops - Thank you all for the excellent work!

@github-actions
Copy link

github-actions bot commented Apr 4, 2022

This issue has been automatically locked since there has not been any recent activity after it was closed. Please open a new issue for related bugs.

@github-actions github-actions bot locked and limited conversation to collaborators Apr 4, 2022
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Projects
None yet
Development

No branches or pull requests

6 participants