Skip to content

Evolutionary frequency visualization tool of temporal data

License

Notifications You must be signed in to change notification settings

MathOnco/EvoFreq

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EvoFreq

Visualization Package for Evolutionary Dynamics from Sequence and Model Data. The publication for EvoFreq is available in BMC Bioinformatics here.

Table of Contents

Installation

Quick Start

Data Inputs

Subclonal Reconstructions

Paired with HAL

Papers using EvoFreq

Installation

Users have options ot install EvoFreq depending on if they want to use 'devtools'. Below we show two popular methods for installation. You will need a fully operational install of R (≥3.5.0) and, optionally, RStudio.

With devtools:

install.packages('devtools')
library(devtools)
install_github('MathOnco/EvoFreq')

From source:

# clone the repository and pass 'install.packages' the path to the cloned evofreq repository
install.packages("./EvoFreq/", repos = NULL, type="source")
library("EvoFreq")

# To uninstall this if it failed, use:
detach("package:EvoFreq", unload = TRUE)
remove.packages("EvoFreq")

Using EvoFreq

EvoFreq has two primary functions: get_evofreq() and the final rendering of these frequencies using plot_evofreq(). To quckly see all the functions within EvoFreq use help(package="EvoFreq"). The quickest way to see an EvoFreq plot is to use:

library(EvoFreq)

data("example.easy.wide") # load example data

freq_frame <- get_evofreq(example.easy.wide[,seq(3,10)], example.easy.wide$clones, example.easy.wide$parents, clone_cmap = "magma") # Get freq_frame, a properly structured data.frame

evo_freq_p <- plot_evofreq(freq_frame) # Get an EvoFreq plot

Below you will find more useful tools, information, and features.

Flexibility in data formats

A goal of EvoFreq was to increase the flexibility in the input data. To this end we employ functions to use both long and wide dataframes.

Wide Format Data

# Note: this can be copy and pasted after installed

data("example.easy.wide") # Load a simple Data Frame example
str(example.easy.wide) # Inspect the data structure

# 'data.frame':	8 obs. of  10 variables:
#  $ parents: num  0 1 1 3 1 5 5 5
#  $ clones : num  1 2 3 4 5 6 7 8
#  $ 1      : num  1 0 0 0 0 0 0 0
#  $ 2      : num  100 5 0 0 0 0 0 0
#  $ 3      : num  200 100 5 0 0 0 0 0
#  $ 4      : num  400 5 100 1 1 0 0 0
#  $ 5      : num  0 0 200 100 100 1 0 1
#  $ 6      : num  0 0 200 125 200 10 1 15
#  $ 7      : num  0 0 300 200 300 20 10 25
#  $ 8      : num  0 0 300 300 300 25 25 100

# You have A column of parents and a column of clones then you have a column for each of the timepoints with sizes for that clone.

# Then get the frequency data. (Use ?get_evofreq for options)
freq_frame <- get_evofreq(example.easy.wide[,seq(3,10)], example.easy.wide$clones, example.easy.wide$parents, clone_cmap = "magma")

# Create the plot (shown on the left below)
evo_freq_p <- plot_evofreq(freq_frame)
print(evo_freq_p)

# We can also choose to update the colors or do this during the first creation. (shown on the right below)
clone_dynamics_df_jet <- update_colors(freq_frame, example.easy.wide$clones, clone_cmap = "jet")
evo_freq_p_jet <- plot_evofreq(clone_dynamics_df_jet)
print(evo_freq_p_jet)

img

Long Format Data

# Note: this can be copy and pasted after installed

# In this example you have two files. One is the edge list of clones and their parents
# The other file is the sizes over time for those clones
# examine the structures to see how to format
# example.easy.long.edges now has an attribute column as well
data("example.easy.long.edges")
data("example.easy.long.sizes")

# Use the long_to_wide_size_df function to get the right data structure.
wide_df <- long_to_wide_freq_ready(long_pop_sizes_df = example.easy.long.sizes, time_col_name = "Time", clone_col_name = "clone", parent_col_name = "parent", size_col_name = "Size", edges_df = example.easy.long.edges)
clones <- wide_df$clones
parents <- wide_df$parents
size_df <- wide_df$wide_size_df

freq_frame <- get_evofreq(size_df, clones, parents, clone_cmap = "inferno")
evo_freq_p <- plot_evofreq(freq_frame)
evo_freq_p

# Add custom ggplot features
evo_freq_labeled_p <- get_evofreq_labels(freq_frame, clone_list=c(5,6), extant_only=F, evofreq_plot = evo_freq_p, apply_labels=T)
evo_freq_labeled_p

# Add custom labels instead of defaults
evo_freq_labeled_p_custom <- get_evofreq_labels(freq_frame, clone_list=c(5,6), custom_label_text = c("KRAS","TP53"), extant_only=F, evofreq_plot = evo_freq_p, apply_labels=T)
evo_freq_labeled_p_custom

library(gridExtra)
grid.arrange(evo_freq_p,evo_freq_labeled_p,evo_freq_labeled_p_custom, nrow=1)

img

Visualizing outputs from Subclonal Reconstruction tools

EvoFreq has necessary functions for visualizing PhyloWGS and CALDER outputs. Similar to other tools, CloneEvol outputs are already compatible.

# PhyloWGS
phylowgs_output="run_name.summ.json"

# Return one or all using parsing options. Use "?parse_phylowgs" for help
tree_data <- parse_phylowgs(json_file=phylowgs_output)

#EvoFreqPlots
pdf('./evofreqs.pdf', width=8, height=4, onefile = T)
for (i in 1:length(f$all)){
  clone_dynamics_df <- get_evofreq(tree_data[[i]][,c(5,length(colnames(tree_data)))], clones=tree_data[[i]]$clone, parents=tree_data[[i]]$parent, clone_cmap = "jet")
  p <- plot_evofreq(evofreq_df)
  print(p)
}
dev.off()

# CALDER
theFile <- "SA501_tree1.dot"
theSoln <- "SA501_soln1.csv"
calder.data <- parse_calder(theSoln, theFile)

### Use the long_to_wide_freq_ready function to get the right data structure.
wide_df <- long_to_wide_freq_ready(long_pop_sizes_df = calder.data$sizeDf,
                                edges_df = calder.data$edges,
                                time_col_name = "time",
                                clone_col_name = "clone",
                               parent_col_name = "parent",
                                size_col_name = "size",
                                fill_gaps_in_size = T
)
clones <- as.character(wide_df$clones)
parents <- as.character(wide_df$parents)
size_df <- wide_df$wide_size_df

clone_dynamics_df <- get_evofreq(size_df, clones, parents, clone_cmap = "jet", data_type = "size", threshold=0, test_links = T, add_origin = T, interp_method = "bezier")
plot_evofreq(clone_dynamics_df)

Features

One of the most powerful features is the endless additions that can be added to each plot. Any ggplot2 function can be added to the frequency dynamics plots.

Extended functionality

For a full list of the different functions and example datasets please use help(package="EvoFreq").

EvoFreq with HAL

HAL now provides functionality that makes visualizing model data with EvoFreq easy. A great blog post illustrates how to do this found here.

Current Papers utilizing EvoFreq

These papers have used EvoFreq for their publication ready images.

EvoFreq featured on Cancer Research cover:

To create something like this yourself it's really simple. Just change your coordinates.

clone_dynamics_df <- get_evofreq(size_df, clones, parents, clone_cmap = "jet", data_type = "size", threshold=0, test_links = T, add_origin = T, interp_method = "bezier")
p1 <- plot_evofreq(clone_dynamics_df)
p1 <- p1 + coord_polar()

img

About

Evolutionary frequency visualization tool of temporal data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages