Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 90 additions & 31 deletions library/rsa.c
Original file line number Diff line number Diff line change
Expand Up @@ -1268,6 +1268,93 @@ int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
return 0;
}

#if !defined(MBEDTLS_RSA_NO_CRT)
/*
* Compute T such that T = TP mod P and T = TP mod Q.
* (This is the Chinese Remainder Theorem - CRT.)
*
* WARNING: uses TP as a temporary, so its value is lost!
*/
static int rsa_apply_crt(mbedtls_mpi *T,
mbedtls_mpi *TP,
const mbedtls_mpi *TQ,
const mbedtls_rsa_context *ctx)
{
int ret;

/*
* T = (TP - TQ) * (Q^-1 mod P) mod P
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(T, TP, TQ));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(TP, T, &ctx->QP));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(T, TP, &ctx->P));

/*
* T = TQ + T * Q
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(TP, T, &ctx->Q));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(T, TQ, TP));

cleanup:
return ret;
}
#endif

/* Generate random A and B such that A^-1 = B mod N */
static int rsa_gen_rand_with_inverse(const mbedtls_rsa_context *ctx,
mbedtls_mpi *A,
mbedtls_mpi *B,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng)
{
#if defined(MBEDTLS_RSA_NO_CRT)
int ret, count = 0;
mbedtls_mpi G;

mbedtls_mpi_init(&G);

mbedtls_mpi_lset(&G, 0);
do {
if (count++ > 10) {
ret = MBEDTLS_ERR_RSA_RNG_FAILED;
goto cleanup;
}

MBEDTLS_MPI_CHK(mbedtls_mpi_random(A, 1, &ctx->N, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&G, B, A, &ctx->N));
} while (mbedtls_mpi_cmp_int(&G, 1) != 0);

cleanup:
mbedtls_mpi_free(&G);

return ret;
#else
int ret;
mbedtls_mpi Ap, Aq, Bp, Bq;

mbedtls_mpi_init(&Ap); mbedtls_mpi_init(&Aq);
mbedtls_mpi_init(&Bp); mbedtls_mpi_init(&Bq);

/* Generate Ap in [1, P) and compute Bp = Ap^-1 mod P */
MBEDTLS_MPI_CHK(mbedtls_mpi_random(&Ap, 1, &ctx->P, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &Bp, &Ap, &ctx->P));

/* Generate Ap in [1, Q) and compute Bq = Aq^-1 mod P */
MBEDTLS_MPI_CHK(mbedtls_mpi_random(&Aq, 1, &ctx->Q, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(NULL, &Bq, &Aq, &ctx->Q));

/* Reconstruct A and B */
MBEDTLS_MPI_CHK(rsa_apply_crt(A, &Ap, &Aq, ctx));
MBEDTLS_MPI_CHK(rsa_apply_crt(B, &Bp, &Bq, ctx));

cleanup:
mbedtls_mpi_free(&Ap); mbedtls_mpi_free(&Aq);
mbedtls_mpi_free(&Bp); mbedtls_mpi_free(&Bq);

return ret;
#endif
}

/*
* Generate or update blinding values, see section 10 of:
* KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
Expand All @@ -1277,41 +1364,25 @@ int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
{
int ret, count = 0;
mbedtls_mpi R;

mbedtls_mpi_init(&R);
int ret;

if (ctx->Vf.p != NULL) {
/* We already have blinding values, just update them by squaring */
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));

goto cleanup;
}

/* Unblinding value: Vf = random number, invertible mod N */
mbedtls_mpi_lset(&R, 0);
do {
if (count++ > 10) {
ret = MBEDTLS_ERR_RSA_RNG_FAILED;
goto cleanup;
}

MBEDTLS_MPI_CHK(mbedtls_mpi_random(&ctx->Vf, 1, &ctx->N, f_rng, p_rng));
MBEDTLS_MPI_CHK(mbedtls_mpi_gcd_modinv_odd(&R, &ctx->Vi, &ctx->Vf, &ctx->N));
} while (mbedtls_mpi_cmp_int(&R, 1) != 0);
MBEDTLS_MPI_CHK(rsa_gen_rand_with_inverse(ctx, &ctx->Vf, &ctx->Vi, f_rng, p_rng));

/* Blinding value: Vi = Vf^(-e) mod N
* (Vi already contains Vf^-1 at this point) */
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));


cleanup:
mbedtls_mpi_free(&R);

return ret;
}

Expand Down Expand Up @@ -1511,19 +1582,7 @@ int mbedtls_rsa_private(mbedtls_rsa_context *ctx,

MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP));
MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ));

/*
* T = (TP - TQ) * (Q^-1 mod P) mod P
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));

/*
* T = TQ + T * Q
*/
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
MBEDTLS_MPI_CHK(rsa_apply_crt(&T, &TP, &TQ, ctx));
#endif /* MBEDTLS_RSA_NO_CRT */

/* Verify the result to prevent glitching attacks. */
Expand Down