Skip to content

Mdraqibkhan/Spectroformer

Repository files navigation

Spectroformer: Multi-Domain Query Cascaded Transformer Network For Underwater Image Enhancement

Md Raqib Khan · Priyanka Mishra · Nancy Mehta · Shruti S. Phutke · Santosh Kumar Vipparthi · Sukumar Nandi · Subrahmanyam Murala

WACV-2024

Logo

Evaluation

To evaluate the model on different datasets using the provided checkpoints and sample degraded images.

Dataset and Checkpoint Structure

  • Sample degraded images for testing: Available in dataset/dataset_name/.
  • Checkpoints for evaluation: Provided in checkpoints/dataset-name/.
  • Results storage: After successful execution, the results will be saved in the results/dataset-name/ folder.

Folder Overview

├── dataset
│   ├── UIEB
│   ├── U-45
│   ├── SQUID
│   ├── UCCS
├── checkpoints
│   ├── UIEB
│   ├── U-45
│   ├── SQUID
│   ├── UCCS
├── results
│   ├── UIEB
│   ├── U-45
│   ├── SQUID
│   ├── UCCS

Running the Evaluation

To evaluate the model on different datasets, follow the instructions below for each specific dataset:

UIEB Dataset Evaluation

Run the following command to evaluate the model on the UIEB dataset:

python test.py --dataset datasets/UIEB/ --save_path Results/UIEB

U-45 Dataset Evaluation

Run the following command to evaluate the model on the U-45 dataset:

python test.py --dataset dataset/U-45/ --save_path Results/U-45

SQUID Dataset Evaluation

Run the following command to evaluate the model on the SQUID dataset:

python test.py --dataset dataset/SQUID/ --save_path Results/SQUID

UCCS Dataset Evaluation

Run the following command to evaluate the model on the UCCS dataset:

python test.py --dataset dataset/UCCS/ --save_path Results/UCCS

Traing

  1. Structure of data for training should be like
uw_data/
   ├── train/
   │   ├── a/  # Input images
   │   └── b/  # Reference (ground truth) images
   └── test/
       ├── a/  # Input images
       └── b/  # Reference (ground truth) images
  1. run
  pyhthon train.py

Citation

If you find this work helpful, please reference it as follows:

@inproceedings{khan2024spectroformer,
  title={Spectroformer: A Multi-Domain Query Cascaded Transformer Network for Underwater Image Enhancement},
  author={Khan, Raqib and Mishra, Priyanka and Mehta, Nancy and Phutke, Shruti S and Vipparthi, Santosh Kumar and Nandi, Sukumar and Murala, Subrahmanyam},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1454--1463},
  year={2024}}

Acknowledgements

Special thanks to the awesome repositories UIPTA and Restoremer, which made this project possible.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages