Md Raqib Khan · Priyanka Mishra · Nancy Mehta · Shruti S. Phutke · Santosh Kumar Vipparthi · Sukumar Nandi · Subrahmanyam Murala
To evaluate the model on different datasets using the provided checkpoints and sample degraded images.
- Sample degraded images for testing: Available in
dataset/dataset_name/
. - Checkpoints for evaluation: Provided in
checkpoints/dataset-name/
. - Results storage: After successful execution, the results will be saved in the
results/dataset-name/
folder.
├── dataset
│ ├── UIEB
│ ├── U-45
│ ├── SQUID
│ ├── UCCS
├── checkpoints
│ ├── UIEB
│ ├── U-45
│ ├── SQUID
│ ├── UCCS
├── results
│ ├── UIEB
│ ├── U-45
│ ├── SQUID
│ ├── UCCS
To evaluate the model on different datasets, follow the instructions below for each specific dataset:
Run the following command to evaluate the model on the UIEB dataset:
python test.py --dataset datasets/UIEB/ --save_path Results/UIEB
Run the following command to evaluate the model on the U-45 dataset:
python test.py --dataset dataset/U-45/ --save_path Results/U-45
Run the following command to evaluate the model on the SQUID dataset:
python test.py --dataset dataset/SQUID/ --save_path Results/SQUID
Run the following command to evaluate the model on the UCCS dataset:
python test.py --dataset dataset/UCCS/ --save_path Results/UCCS
- Structure of data for training should be like
uw_data/
├── train/
│ ├── a/ # Input images
│ └── b/ # Reference (ground truth) images
└── test/
├── a/ # Input images
└── b/ # Reference (ground truth) images
- run
pyhthon train.py
If you find this work helpful, please reference it as follows:
@inproceedings{khan2024spectroformer,
title={Spectroformer: A Multi-Domain Query Cascaded Transformer Network for Underwater Image Enhancement},
author={Khan, Raqib and Mishra, Priyanka and Mehta, Nancy and Phutke, Shruti S and Vipparthi, Santosh Kumar and Nandi, Sukumar and Murala, Subrahmanyam},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={1454--1463},
year={2024}}
Special thanks to the awesome repositories UIPTA and Restoremer, which made this project possible.