We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
gs_spending_bound
library(survival) library(dplyr) library(simtrial) library(gsDesign) library(gsDesign2) devtools::load_all() # set parameters analysisTimes <- c(44, 56, 66) duration <- 44 sampleSize <- 385 enrollRates <- tibble(Stratum = "All", duration = duration, rate = sampleSize / duration) T <- 200 # Total duration eta <- -log(0.95)/12 # Dropoff rate sfu <- sfLDOF #Spending function sfupar <- c(0) # similar to OF tswitch1 <- 2 tswitch2 <- 10 tswitch3 <- 24 tswitch4 <- 38 t <- 100 lambda1 <- -log(0.97) / 2 lambda2 <- -log(0.4948454) / 8 #48/97;10-2 lambda3 <- -log(0.2916667) / 28 #14/48;38-10 lambda4 <- lambda3 lambda5 <- -log(10/14) / (72 - 38) hi <- rep(c(lambda1, lambda2, lambda3, lambda4, lambda5), times = c(tswitch1,tswitch2-tswitch1,tswitch3-tswitch2,tswitch4-tswitch3,t-tswitch4)) S <- rep(1, times = t-1) hr1 <- 1 hr2 <- 0.65 delay <- 2 ratio <- 1 failRates <- tibble(Stratum = "All", duration = rep(c(1),each=length(hi)), failRate = hi, hr = rep(c(hr1,hr2),times = c(delay,length(hi)-delay)), dropoutRate = eta) ahr <- AHR(enrollRates = enrollRates, failRates = failRates, totalDuration = analysisTimes, ratio = 1) events <-ahr$Events alpha <- 0.025 # 1-sided Type I error # alpha = 0.025 beta <- 0.105 # Type II error (1 - power) k <- 3 # run `gs_design_ahr` with a bug gs_design_ahr(enrollRates = enrollRates, failRates = failRates, ratio = 1, alpha = alpha, beta = beta, analysisTimes = analysisTimes, upper = gs_spending_bound, upar = list(sf = gsDesign::sfLDOF, total_spend = alpha)) # the above bug lies in `gs_design_npe` -> `gs_power_npe` -> `gs_spending_bound` y <- gs_info_ahr(enrollRates, failRates, ratio = ratio, events = NULL, analysisTimes=analysisTimes) gs_design_npe(theta = y$theta, theta1 = y$theta, info = y$info, info0 = y$info0, info1 = y$info0, alpha = alpha, beta = beta, binding = FALSE, upper = gs_spending_bound, lower = gs_b, upar = list(sf = gsDesign::sfLDOF, total_spend = alpha), lpar = c(qnorm(.1), -Inf, -Inf), test_upper = TRUE, test_lower = TRUE, r = 18, tol = 1e-6) gs_power_npe(theta = y$theta, theta1 = y$theta, info = y$info, info0 = y$info0, info1 = y$info0, binding = FALSE, upper = gs_spending_bound, lower = gs_b, upar = list(sf = gsDesign::sfLDOF, total_spend = alpha), lpar = c(qnorm(.1), -Inf, -Inf), test_upper = TRUE, test_lower = TRUE, r = 18, tol = 1e-6) # debug with `gs_power_npe` # it works for 1st IA, and 2nd IA, but fails at FA # initialize theta = y$theta theta1 = y$theta info = y$info info0 = y$info0 info1 = y$info0 binding = FALSE upper = gs_spending_bound lower = gs_b upar = list(sf = gsDesign::sfLDOF, total_spend = alpha) lpar = c(qnorm(.1), -Inf, -Inf) test_upper = TRUE test_lower = TRUE r = 18 tol = 1e-6 K <- length(info) if (length(theta) == 1 && K > 1) theta <- rep(theta, K) if (is.null(theta1)){theta1 <- theta}else if (length(theta1)==1) theta1 <- rep(theta1,K) if (length(test_upper) == 1 && K > 1) test_upper <- rep(test_upper, K) if (length(test_lower) == 1 && K > 1) test_lower <- rep(test_lower, K) a <- rep(-Inf, K) b <- rep(Inf, K) hgm1_0 <- NULL hgm1_1 <- NULL hgm1 <- NULL upperProb <- rep(NA, K) lowerProb <- rep(NA, K) # k = 1 k = 1 a[k] <- lower(k = k, par = lpar, hgm1 = hgm1_1, theta = theta1, info = info1, r = r, tol = tol, test_bound = test_lower, efficacy = FALSE) b[k] <- upper(k = k, par = upar, hgm1 = hgm1_0, info = info0, r = r, tol = tol, test_bound = test_upper) upperProb[1] <- if(b[1] < Inf) {pnorm(b[1], mean = sqrt(info[1]) * theta[1], lower.tail = FALSE)}else{0} lowerProb[1] <- if(a[1] > -Inf){pnorm(a[1], mean = sqrt(info[1]) * theta[1])}else{0} hgm1_0 <- h1(r = r, theta = 0, I = info0[1], a = if(binding){a[1]}else{-Inf}, b = b[1]) hgm1_1 <- h1(r = r, theta = theta1[1], I = info1[1], a = a[1], b = b[1]) hgm1 <- h1(r = r, theta = theta[1], I = info[1], a = a[1], b = b[1]) a b upperProb lowerProb # k = 2 k = 2 a[k] <- lower(k = k, par = lpar, hgm1 = hgm1_1, theta = theta1, info = info1, r = r, tol = tol, test_bound = test_lower, efficacy = FALSE) b[k] <- upper(k = k, par = upar, hgm1 = hgm1_0, info = info0, r = r, tol = tol, test_bound = test_upper) upperProb[k] <- if(b[k]< Inf){ sum(hupdate(r = r, theta = theta[k], I = info[k], a = b[k], b = Inf, thetam1 = theta[k - 1], Im1 = info[k - 1], gm1 = hgm1)$h) }else{0} lowerProb[k] <- if(a[k] > -Inf){ sum(hupdate(r = r, theta = theta[k], I = info[k], a = -Inf, b = a[k], thetam1 = theta[k - 1], Im1 = info[k - 1], gm1 = hgm1)$h)}else{0} hgm1_0 <- hupdate(r = r, theta = 0, I = info0[k], a = if(binding){a[k]}else{-Inf}, b = b[k], thetam1 = 0, Im1 = info0[k-1], gm1 = hgm1_0) hgm1_1 <- hupdate(r = r, theta = theta1[k], I = info1[k], a = a[k], b = b[k], thetam1 = theta1[k-1], Im1 = info1[k-1], gm1 = hgm1_1) hgm1 <- hupdate(r = r, theta = theta[k], I = info[k], a = a[k], b = b[k], thetam1 = theta[k-1], Im1 = info[k-1], gm1 = hgm1) a b upperProb lowerProb # k = 3 k = 3 a[k] <- lower(k = k, par = lpar, hgm1 = hgm1_1, theta = theta1, info = info1, r = r, tol = tol, test_bound = test_lower, efficacy = FALSE) b[k] <- upper(k = k, par = upar, hgm1 = hgm1_0, info = info0, r = r, tol = tol, test_bound = test_upper) debug(upper) upper(k = k, par = upar, hgm1 = hgm1_0, info = info0, r = r, tol = tol, test_bound = test_upper) undebug()
The text was updated successfully, but these errors were encountered:
LittleBeannie
Successfully merging a pull request may close this issue.
The text was updated successfully, but these errors were encountered: