Skip to content

MiZhenxing/Switch-NeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields (ICLR 2023)

Demo

Updation

  • 2023-04-13, move ckpts to onedrive
  • 2023-03-30, stable release.
  • 2023-03-28, release the checkpoints and codes for three datasets.

Installation

The main dependencies are in the requirements.txt. We use this version of Tutel in for MoE layers. The Tutel has changed a lot so make sure to install the version of the correct commit. Please follow the instructions in Tutel to install it. We give an instruction on the Tutel installation.

Dataset

We have performed experiments on the datasets from the Mega-NeRF, Block-NeRF and Bungee-NeRF.

Mega-NeRF

Please follow the instructions in the code of Mega-NeRF to download and process the Mill 19 and UrbanScene 3D datasets.

Block-NeRF

Please follow the website of Block-NeRF to download the raw Mission Bay dataset.

Bungee-NeRF

Please follow the BungeeNeRF to download its two scenes.

Training

Mega-NeRF scenes

We provide the example commands to train the model on Building scene.

We should first generate data chunks. The dataset_path should be set to the scene folder processed above. The exp_name is used for logging results. If it does not exit, the program will make a new one. The chunk_paths is used to store the generate the data chunks. The chunks will be reused in later experiments.

Generate chunks. Please edit the exp_name, dataset_path and chunk_paths.

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch \ 
--use_env --master_port=12345 --nproc_per_node=1 -m \
switch_nerf.train \
--config=switch_nerf/configs/switch_nerf/building.yaml \
--use_moe \
--exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/building-pixsfm \
--chunk_paths=/your/absolute/chunk/path/building_chunk_factor_1_bg \
--generate_chunk

Train the model on the Building scene and the generated chunks. The chunk_paths is reused after generating chunks.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=8 -m \
switch_nerf.train \
--config=switch_nerf/configs/switch_nerf/building.yaml \
--use_moe \
--exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/building-pixsfm \
--chunk_paths=/your/absolute/chunk/path/building_chunk_factor_1_bg \
--use_balance_loss \
--i_print=1000 \
--batch_size=8192 \
--moe_expert_type=expertmlp \
--moe_train_batch \
--moe_test_batch \
--model_chunk_size=131072 \
--moe_capacity_factor=1.0 \
--batch_prioritized_routing \
--moe_l_aux_wt=0.0005 \
--amp_use_bfloat16 \
--use_moe_external_gate \
--use_gate_input_norm \
--use_sigma_noise \
--sigma_noise_std=1.0

Block-NeRF scenes

We adapt a data interface mainly based on the UnboundedNeRFPytorch. We first generate data chunks from the raw tf_records in Block-NeRF dataset.

Please edit the exp_name, dataset_path and chunk_paths.

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=1 -m \
switch_nerf.train \
--config=switch_nerf/configs/switch_nerf/mission_bay.yaml \
--use_moe \
--exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/Mission_Bay/v1.0 \
--block_train_list_path=switch_nerf/datasets/lists/block_nerf_train_val.txt \
--block_image_hash_id_map_path=switch_nerf/datasets/lists/block_nerf_id_map.json \
--chunk_paths=/your/absolute/chunk/path/mission_bay_chunk_radii_1 \
--no_bg_nerf --near=0.01 --far=10.0 --generate_chunk

Then we train the model on the Mission Bay scene and the generated chunks. The batch_size is set according to the memory of RTX 3090.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=8 -m \
switch_nerf.train \
--config=switch_nerf/configs/switch_nerf/mission_bay.yaml \
--use_moe --exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/Mission_Bay/v1.0 \
--block_train_list_path=switch_nerf/datasets/lists/block_nerf_train_val.txt \
--block_image_hash_id_map_path=switch_nerf/datasets/lists/block_nerf_id_map.json \
--chunk_paths=/your/absolute/chunk/path/mission_bay_chunk_radii_1 \
--no_bg_nerf --near=0.01 --far=10.0 \
--use_balance_loss \
--i_print=1000 \
--batch_size=13312 \
--moe_expert_type=expertmlp \
--moe_train_batch \
--moe_test_batch \
--model_chunk_size=212992 \
--coarse_samples=257 \
--fine_samples=257 \
--moe_capacity_factor=1.0 \
--batch_prioritized_routing \
--moe_l_aux_wt=0.0005 \
--amp_use_bfloat16 \
--use_moe_external_gate \
--use_gate_input_norm \
--use_sigma_noise \
--sigma_noise_std=1.0

Bungee-NeRF scenes

We need not to generate chunks for Bungee-NeRF scenes. We provide the example commands to train the model on Transamerica scene.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=4 -m \
switch_nerf.train_nerf_moe \
--config=switch_nerf/configs/switch_nerf/bungee.yaml \
--use_moe --exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/multiscale_google_Transamerica \
--use_balance_loss \
--i_print=1000 \
--batch_size=4096 \
--moe_expert_type=expertmlp \
--moe_train_batch \
--moe_test_batch \
--model_chunk_size=65536 \
--moe_capacity_factor=1.0 \
--batch_prioritized_routing \
--moe_l_aux_wt=0.0005 \
--no_amp \
--use_moe_external_gate \
--use_gate_input_norm \
--use_sigma_noise \
--sigma_noise_std=1.0 \
--moe_expert_num=4

The two scenes in Bungee-NeRF use the same configure file.

Testing

We provide checkpoints in onedrive.

Test on the Building scene in Mega-NeRF dataset.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=8 -m \
switch_nerf.eval_image \
--config=switch_nerf/configs/switch_nerf/building.yaml \
--use_moe --exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/building-pixsfm \
--i_print=1000 \
--moe_expert_type=seqexperts \
--model_chunk_size=131072 \
--ckpt_path=/your/absolute/ckpt/path/building.pt \
--expertmlp2seqexperts \
--use_moe_external_gate \
--use_gate_input_norm

Test on the the Mission Bay scene in Block-NeRF dataset.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=8 -m \
switch_nerf.eval_image_blocknerf \
--config=switch_nerf/configs/switch_nerf/mission_bay.yaml \
--use_moe \
--exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/Mission_Bay/v1.0 \
--block_val_list_path=switch_nerf/datasets/lists/block_nerf_val.txt \
--block_train_list_path=switch_nerf/datasets/lists/block_nerf_train_val.txt \
--block_image_hash_id_map_path=switch_nerf/datasets/lists/block_nerf_id_map.json \
--i_print=1000 \
--near=0.01 --far=10.0 \
--moe_expert_type=seqexperts \
--model_chunk_size=212992 \
--coarse_samples=513 \
--fine_samples=513 \
--ckpt_path=/your/absolute/ckpt/path/mission_bay.pt \
--expertmlp2seqexperts \
--use_moe_external_gate \
--use_gate_input_norm \
--set_timeout \
--image_pixel_batch_size=8192

You can also use less GPUs.

Test on the Transamerica scene in Bungee-NeRF dataset.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=4 -m \
switch_nerf.eval_nerf_moe \
--config=switch_nerf/configs/switch_nerf/bungee.yaml \
--use_moe \
--exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/multiscale_google_Transamerica \
--i_print=1000 \
--batch_size=4096 \
--moe_expert_type=seqexperts \
--model_chunk_size=65536 \
--ckpt_path=/your/absolute/ckpt/path/transamerica.pt \
--expertmlp2seqexperts \
--no_amp \
--use_moe_external_gate \
--use_gate_input_norm \
--moe_expert_num=4

Visualization

We provide a simple point cloud visualizer in this repository. You can use the commands below to create point clouds and visualize them with transparency. You can use Meshlab to visualize the point clouds without transparency. Meshlab can also visualize the transparency with "Shading: Dot Decorator" selected but the visualization is not clear enough.

Generate point clouds:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch \
--use_env --master_port=12345 --nproc_per_node=8 -m \
switch_nerf.eval_points \
--config=switch_nerf/configs/switch_nerf/building.yaml \
--use_moe --exp_name=/your/absolute/experiment/path \
--dataset_path=/your/absolute/scene/path/building-pixsfm \
--i_print=1000 \
--moe_expert_type=seqexperts \
--model_chunk_size=131072 \
--ckpt_path=/your/absolute/ckpt/path/500000.pt \
--expertmlp2seqexperts \
--use_moe_external_gate \
--use_gate_input_norm \
--moe_return_gates \
--return_pts \
--return_pts_rgb \
--return_pts_alpha \
--render_test_points_sample_skip=4 \
--val_scale_factor=8 \
--render_test_points_image_num=20

Other scenes in Mega-NeRF use --render_test_points_image_num=21.

Merge point clouds from different validation images.

python -m switch_nerf.scripts.merge_points \
--data_path=/your/absolute/experiment/path/0/eval_points \
--merge_all \
--image_num=20 \
--model_type=switch \
-r=0.2

Other scenes in Mega-NeRF use --image_num=21. -r is used to randomly downsample point clouds by a ratio so that it can be visualized on our desktop.

License

Our code is distributed under the MIT License. See LICENSE file for more information.

Citation

@inproceedings{mi2023switchnerf,
  title={Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields},
  author={Zhenxing Mi and Dan Xu},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2023},
  url={https://openreview.net/forum?id=PQ2zoIZqvm}
}

Contact

If you have any questions, please raise an issue or email to Zhenxing Mi (zmiaa@connect.ust.hk).

Acknowledgments

Our code follows several awesome repositories. We appreciate them for making their codes available to public.

Releases

No releases published

Packages

No packages published

Languages