Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support PuLID #2838

Merged
merged 7 commits into from
May 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion internal_controlnet/external_code.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from modules.safe import unsafe_torch_load
from scripts import global_state
from scripts.logging import logger
from scripts.enums import HiResFixOption
from scripts.enums import HiResFixOption, PuLIDMode
from scripts.supported_preprocessor import Preprocessor, PreprocessorParameter

from modules.api import api
Expand Down Expand Up @@ -207,6 +207,10 @@ class ControlNetUnit:
# The effective region mask that unit's effect should be restricted to.
effective_region_mask: Optional[np.ndarray] = None

# The weight mode for PuLID.
# https://github.com/ToTheBeginning/PuLID
pulid_mode: PuLIDMode = PuLIDMode.FIDELITY

# The tensor input for ipadapter. When this field is set in the API,
# the base64string will be interpret by torch.load to reconstruct ipadapter
# preprocessor output.
Expand Down Expand Up @@ -243,6 +247,7 @@ def infotext_excluded_fields() -> List[str]:
# provide much information when restoring the unit.
"inpaint_crop_input_image",
"effective_region_mask",
"pulid_mode",
]

@property
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,4 @@ addict
yapf
albumentations==1.4.3
matplotlib
facexlib
2 changes: 1 addition & 1 deletion scripts/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def accept(self, json_dict: dict) -> None:
low_vram=low_vram,
)
if preprocessor.returns_image:
images.append(encode_to_base64(result.display_image))
images.append(encode_to_base64(result.display_images[0]))
else:
tensors.append(encode_tensor_to_base64(result.value))

Expand Down
22 changes: 17 additions & 5 deletions scripts/controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,14 @@
import scripts.preprocessor as preprocessor_init # noqa
from annotator.util import HWC3
from scripts import global_state, hook, external_code, batch_hijack, controlnet_version, utils
from internal_controlnet.external_code import ControlMode
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
from scripts.controlnet_lllite import clear_all_lllite
from scripts.ipadapter.plugable_ipadapter import ImageEmbed, clear_all_ip_adapter
from scripts.ipadapter.pulid_attn import PULID_SETTING_FIDELITY, PULID_SETTING_STYLE
from scripts.utils import load_state_dict, get_unique_axis0, align_dim_latent
from scripts.hook import ControlParams, UnetHook, HackedImageRNG
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption, PuLIDMode
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.controlnet_ui.photopea import Photopea
from scripts.logging import logger
Expand Down Expand Up @@ -279,6 +281,7 @@ def preprocess_input_image(input_image: np.ndarray):
)
detected_map = result.value
is_image = preprocessor.returns_image
# TODO: Refactor img control detection logic.
if high_res_fix:
if is_image:
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
Expand All @@ -293,7 +296,8 @@ def preprocess_input_image(input_image: np.ndarray):
store_detected_map(detected_map, unit.module)
else:
control = detected_map
store_detected_map(input_image, unit.module)
for image in result.display_images:
store_detected_map(image, unit.module)

if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
Expand Down Expand Up @@ -1092,8 +1096,8 @@ def ad_process_control(cc: List[torch.Tensor], cn_ad_keyframe_idx=cn_ad_keyframe
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_control,
hr_option=HiResFixOption.from_value(unit.hr_option) if high_res_fix else HiResFixOption.BOTH,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
soft_injection=control_mode != ControlMode.BALANCED,
cfg_injection=control_mode == ControlMode.CONTROL,
effective_region_mask=(
get_pytorch_control(unit.effective_region_mask)[:, 0:1, :, :]
if unit.effective_region_mask is not None
Expand Down Expand Up @@ -1190,7 +1194,7 @@ def recolor_intensity_post_processing(x, i):

is_low_vram = any(unit.low_vram for unit in self.enabled_units)

for i, param in enumerate(forward_params):
for i, (param, unit) in enumerate(zip(forward_params, self.enabled_units)):
if param.control_model_type == ControlModelType.IPAdapter:
if param.advanced_weighting is not None:
logger.info(f"IP-Adapter using advanced weighting {param.advanced_weighting}")
Expand All @@ -1205,6 +1209,13 @@ def recolor_intensity_post_processing(x, i):
weight = param.weight

h, w, hr_y, hr_x = Script.get_target_dimensions(p)
pulid_mode = PuLIDMode(unit.pulid_mode)
if pulid_mode == PuLIDMode.STYLE:
pulid_attn_setting = PULID_SETTING_STYLE
else:
assert pulid_mode == PuLIDMode.FIDELITY
pulid_attn_setting = PULID_SETTING_FIDELITY

param.control_model.hook(
model=unet,
preprocessor_outputs=param.hint_cond,
Expand All @@ -1215,6 +1226,7 @@ def recolor_intensity_post_processing(x, i):
latent_width=w // 8,
latent_height=h // 8,
effective_region_mask=param.effective_region_mask,
pulid_attn_setting=pulid_attn_setting,
)
if param.control_model_type == ControlModelType.Controlllite:
param.control_model.hook(
Expand Down
24 changes: 22 additions & 2 deletions scripts/controlnet_ui/controlnet_ui_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
from scripts.controlnet_ui.preset import ControlNetPresetUI
from scripts.controlnet_ui.photopea import Photopea
from scripts.controlnet_ui.advanced_weight_control import AdvancedWeightControl
from scripts.enums import InputMode
from scripts.enums import InputMode, PuLIDMode
from modules import shared
from modules.ui_components import FormRow, FormHTML, ToolButton

Expand Down Expand Up @@ -287,6 +287,7 @@ def __init__(
self.batch_image_dir_state = None
self.output_dir_state = None
self.advanced_weighting = gr.State(None)
self.pulid_mode = None

# API-only fields
self.ipadapter_input = gr.State(None)
Expand Down Expand Up @@ -626,6 +627,15 @@ def render(self, tabname: str, elem_id_tabname: str) -> None:
visible=False,
)

self.pulid_mode = gr.Radio(
choices=[e.value for e in PuLIDMode],
value=self.default_unit.pulid_mode.value,
label="PuLID Mode",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_pulid_mode_radio",
elem_classes="controlnet_pulid_mode_radio",
visible=False,
)

self.loopback = gr.Checkbox(
label="[Batch Loopback] Automatically send generated images to this ControlNet unit in batch generation",
value=self.default_unit.loopback,
Expand Down Expand Up @@ -673,6 +683,7 @@ def render(self, tabname: str, elem_id_tabname: str) -> None:
self.save_detected_map,
self.advanced_weighting,
self.effective_region_mask,
self.pulid_mode,
)

unit = gr.State(self.default_unit)
Expand Down Expand Up @@ -947,7 +958,7 @@ def is_openpose(module: str):

return (
# Update to `generated_image`
gr.update(value=result.display_image, visible=True, interactive=False),
gr.update(value=result.display_images[0], visible=True, interactive=False),
# preprocessor_preview
gr.update(value=True),
# openpose editor
Expand Down Expand Up @@ -1118,6 +1129,14 @@ def register_shift_upload_mask(self):
show_progress=False,
)

def register_shift_pulid_mode(self):
self.model.change(
fn=lambda model: gr.update(visible="pulid" in model.lower()),
inputs=[self.model],
outputs=[self.pulid_mode],
show_progress=False,
)

def register_sync_batch_dir(self):
def determine_batch_dir(batch_dir, fallback_dir, fallback_fallback_dir):
if batch_dir:
Expand Down Expand Up @@ -1220,6 +1239,7 @@ def register_core_callbacks(self):
self.register_build_sliders()
self.register_shift_preview()
self.register_shift_upload_mask()
self.register_shift_pulid_mode()
self.register_create_canvas()
self.register_clear_preview()
self.register_multi_images_upload()
Expand Down
5 changes: 5 additions & 0 deletions scripts/enums.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,3 +247,8 @@ class InputMode(Enum):
# Input is a directory. 1 generation. Each generation takes N input image
# from the directory.
MERGE = "merge"


class PuLIDMode(Enum):
FIDELITY = "Fidelity"
STYLE = "Extremely style"
62 changes: 62 additions & 0 deletions scripts/ipadapter/image_proj_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,3 +269,65 @@ def forward(self, x):

latents = self.proj_out(latents)
return self.norm_out(latents)


class PuLIDEncoder(nn.Module):
def __init__(self, width=1280, context_dim=2048, num_token=5):
super().__init__()
self.num_token = num_token
self.context_dim = context_dim
h1 = min((context_dim * num_token) // 4, 1024)
h2 = min((context_dim * num_token) // 2, 1024)
self.body = nn.Sequential(
nn.Linear(width, h1),
nn.LayerNorm(h1),
nn.LeakyReLU(),
nn.Linear(h1, h2),
nn.LayerNorm(h2),
nn.LeakyReLU(),
nn.Linear(h2, context_dim * num_token),
)

for i in range(5):
setattr(
self,
f"mapping_{i}",
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, context_dim),
),
)

setattr(
self,
f"mapping_patch_{i}",
nn.Sequential(
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, 1024),
nn.LayerNorm(1024),
nn.LeakyReLU(),
nn.Linear(1024, context_dim),
),
)

def forward(self, x, y):
# x shape [N, C]
x = self.body(x)
x = x.reshape(-1, self.num_token, self.context_dim)

hidden_states = ()
for i, emb in enumerate(y):
hidden_state = getattr(self, f"mapping_{i}")(emb[:, :1]) + getattr(
self, f"mapping_patch_{i}"
)(emb[:, 1:]).mean(dim=1, keepdim=True)
hidden_states += (hidden_state,)
hidden_states = torch.cat(hidden_states, dim=1)

return torch.cat([x, hidden_states], dim=1)
45 changes: 41 additions & 4 deletions scripts/ipadapter/ipadapter_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
MLPProjModel,
MLPProjModelFaceId,
ProjModelFaceIdPlus,
PuLIDEncoder,
)


Expand Down Expand Up @@ -71,6 +72,7 @@ def __init__(
is_faceid: bool,
is_portrait: bool,
is_instantid: bool,
is_pulid: bool,
is_v2: bool,
):
super().__init__()
Expand All @@ -85,9 +87,12 @@ def __init__(
self.is_v2 = is_v2
self.is_faceid = is_faceid
self.is_instantid = is_instantid
self.is_pulid = is_pulid
self.clip_extra_context_tokens = 16 if (self.is_plus or is_portrait) else 4

if is_instantid:
if self.is_pulid:
self.image_proj_model = PuLIDEncoder()
elif self.is_instantid:
self.image_proj_model = self.init_proj_instantid()
elif is_faceid:
self.image_proj_model = self.init_proj_faceid()
Expand Down Expand Up @@ -235,6 +240,34 @@ def _get_image_embeds_instantid(
self.image_proj_model(torch.zeros_like(prompt_image_emb)),
)

def _get_image_embeds_pulid(self, pulid_proj_input) -> ImageEmbed:
"""Get image embeds for pulid."""
id_cond = torch.cat(
[
pulid_proj_input.id_ante_embedding.to(
device=self.device, dtype=torch.float32
),
pulid_proj_input.id_cond_vit.to(
device=self.device, dtype=torch.float32
),
],
dim=-1,
)
id_vit_hidden = [
t.to(device=self.device, dtype=torch.float32)
for t in pulid_proj_input.id_vit_hidden
]
return ImageEmbed(
self.image_proj_model(
id_cond,
id_vit_hidden,
),
self.image_proj_model(
torch.zeros_like(id_cond),
[torch.zeros_like(t) for t in id_vit_hidden],
),
)

@staticmethod
def load(state_dict: dict, model_name: str) -> IPAdapterModel:
"""
Expand All @@ -245,6 +278,7 @@ def load(state_dict: dict, model_name: str) -> IPAdapterModel:
is_v2 = "v2" in model_name
is_faceid = "faceid" in model_name
is_instantid = "instant_id" in model_name
is_pulid = "pulid" in model_name.lower()
is_portrait = "portrait" in model_name
is_full = "proj.3.weight" in state_dict["image_proj"]
is_plus = (
Expand All @@ -256,8 +290,8 @@ def load(state_dict: dict, model_name: str) -> IPAdapterModel:
sdxl = cross_attention_dim == 2048
sdxl_plus = sdxl and is_plus

if is_instantid:
# InstantID does not use clip embedding.
if is_instantid or is_pulid:
# InstantID/PuLID does not use clip embedding.
clip_embeddings_dim = None
elif is_faceid:
if is_plus:
Expand Down Expand Up @@ -291,10 +325,13 @@ def load(state_dict: dict, model_name: str) -> IPAdapterModel:
is_portrait=is_portrait,
is_instantid=is_instantid,
is_v2=is_v2,
is_pulid=is_pulid,
)

def get_image_emb(self, preprocessor_output) -> ImageEmbed:
if self.is_instantid:
if self.is_pulid:
return self._get_image_embeds_pulid(preprocessor_output)
elif self.is_instantid:
return self._get_image_embeds_instantid(preprocessor_output)
elif self.is_faceid and self.is_plus:
# Note: FaceID plus uses both face_embed and clip_embed.
Expand Down
Loading
Loading