Skip to content

MingyuY/Iterative-view-synthesis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral)

Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

Overview architecture


The network architecture



Experiment Results

  • chair



  • MultiPIE



  • Flow


Preparation

  • Prerequisites
    • Tensorflow
    • Python 2.x with matplotlib, numpy and scipy
  • Dataset
  • Download model

Quick Start

Exemplar commands are listed here for a quick start.

dataset

  • prepare dataset

    python datasets/creat_txt.py --path_MultiPIE 'Path to MultiPIE Dataset' --path_chair 'Path to chair Dataset' --path_300w_LP 'Path to 300w-LP Dataset'
    
    shuf datasets/multiPIE_train_paired.txt -o  datasets/multiPIE_train_paired_shuf.txt
    
    python datasets/creat_tf.py --path_MultiPIE 'Path to MultiPIE Dataset' --path_chair 'Path to chair Dataset' --path_300w_LP 'Path to 300w-LP Dataset'
    

Training

  • To train with size of 128 X 128

    python MultiPIE.py --mode training
    
    python chair.py --mode training

Testing

  • Example of test

    python  MultiPIE.py --mode test --batch_size 1 --model_path 'Path to Training Model'
    
    python  chair.py --mode test --batch_size 1 --model_path 'Path to Training Model'

Citation

If this work is useful for your research, please consider citing:

@inproceedings{yin2021id, title={ID-Unet: Iterative Soft and Hard Deformation for View Synthesis}, author={Yin, Mingyu and Sun, Li and Li, Qingli}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={7220--7229}, year={2021} }

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages