This repository contains the source code for the research paper: Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning. It builds upon our previous research: Model-based Imitation Learning for Real-time Robot Navigation in Crowds.
-
Set up a Python environment on your local machine:
$ python -m venv '/UserDefinedDirectoryPath/d3rlpyAgentsENV' $ source /UserDefinedDirectoryPath/d3rlpyAgentsENV/bin/activate
-
Install the
d3rlpy
open-source library from source:$ git clone https://github.com/takuseno/d3rlpy $ cd d3rlpy $ pip install -e .
-
Install PyTorch (this version uses PyTorch 2.0.1):
$ pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
-
Finally, install the necessary additional modules:
$ pip install -r requirements.txt
To run the main policy script, use the following command:
$ python MPPI_policy.py
If you find this work useful, please cite it as follows:
@inproceedings{moder2024,
title={Navigating the {H}uman {M}aze: {R}eal-{T}ime {R}obot {P}athfinding with {G}enerative {I}mitation {L}earning},
author={Moder, Martin and Adhisaputra, Stephen and Pauli, Josef},
year={2024},
month={05},
pages={},
doi={10.13140/RG.2.2.27426.44485}
}
@inproceedings{moder2023model,
title={Model-based Imitation Learning for Real-time Robot Navigation in Crowds},
author={Moder, Martin and {\"O}zgan, Fatih and Pauli, Josef},
booktitle={2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)},
pages={513--519},
year={2023},
organization={IEEE}
}