Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[REFRACTOR] gptqmodel_post_init #103

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion gptqmodel/models/deepseek_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,4 +39,4 @@ class DeepSeekV2GPTQ(BaseGPTQModel):
# included in layer 1-59
["mlp.shared_experts.gate_proj", "mlp.shared_experts.up_proj"],
["mlp.shared_experts.down_proj"],
]
]
58 changes: 22 additions & 36 deletions gptqmodel/utils/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@

from ..models._const import CPU, CUDA_0, EXLLAMA_DEFAULT_MAX_INPUT_LENGTH, EXPERT_INDEX_PLACEHOLDER, SUPPORTED_MODELS
from ..nn_modules.qlinear import BaseQuantLinear
from ..nn_modules.qlinear.qlinear_exllama import QuantLinear as ExllamaQuantLinear
from ..nn_modules.qlinear.qlinear_exllamav2 import QuantLinear as ExllamaV2QuantLinear
from ..quantization import FORMAT, QuantizeConfig
from .backend import Backend
from .importer import select_quant_linear
Expand Down Expand Up @@ -393,37 +395,28 @@ def simple_dispatch_model(model, device_map):

return model


# TODO: refractor. very strange post_init has to re-determine qlinear type again
# when qliear type is selected, it should auto-override the model post_init method and
# not have to go about looping over modules to match qlinear type a second time as it is
# very prone to bugs
def gptqmodel_post_init(model, use_act_order: bool, max_input_length: Optional[int] = None):
"""
The max_input_length argument is specific to the exllama backend, that requires to initialize a buffer temp_state.
"""

# post init for bitblas backend.
device_to_buffers_size = {}
for _, submodule in model.named_modules():
if hasattr(submodule, "QUANT_TYPE") and submodule.QUANT_TYPE == "bitblas":
submodule.post_init()

# exllama
model_uses_exllama = False
# exllamav2
fixed_bytes = {}
model_uses_exllamav2 = False

for name, submodule in model.named_modules():
if isinstance(submodule, BaseQuantLinear) and submodule.QUANT_TYPE == "exllama":
if isinstance(submodule, ExllamaQuantLinear):
model_uses_exllama = True
device = submodule.qweight.device
if device not in device_to_buffers_size:
device_to_buffers_size[device] = {
"max_dq_buffer_size": 1,
"max_inner_outer_dim": 1,
}

if not use_act_order:
submodule._use_act_order = False
else:
submodule._use_act_order = True
submodule._use_act_order = True if use_act_order else False

# Disable this heuristic for detecting act_order, but it could be used instead of the config.
"""
Expand All @@ -447,6 +440,11 @@ def gptqmodel_post_init(model, use_act_order: bool, max_input_length: Optional[i
submodule.infeatures,
submodule.outfeatures,
)
elif isinstance(submodule, ExllamaV2QuantLinear):
model_uses_exllamav2 = True
device = submodule.qweight.device
scratch_fixed = submodule.scratch_space_fixed()
fixed_bytes[device] = max(scratch_fixed, fixed_bytes.get(device, 0))

if model_uses_exllama:
# To be honest this is quite ugly, not proud of this.
Expand Down Expand Up @@ -496,22 +494,6 @@ def gptqmodel_post_init(model, use_act_order: bool, max_input_length: Optional[i
matmul_no_half2 = False
set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2)

# The buffers need to have been initialized first before calling make_q4.
for name, submodule in model.named_modules():
if isinstance(submodule, BaseQuantLinear) and submodule.QUANT_TYPE == "exllama":
submodule.post_init()

# exllamav2
fixed_bytes = {}
model_uses_exllamav2 = False

for _, submodule in model.named_modules():
if isinstance(submodule, BaseQuantLinear) and submodule.QUANT_TYPE == "exllamav2":
model_uses_exllamav2 = True
device = submodule.qweight.device
scratch_fixed = submodule.scratch_space_fixed()
fixed_bytes[device] = max(scratch_fixed, fixed_bytes.get(device, 0))

if model_uses_exllamav2:
from ..nn_modules.qlinear.qlinear_exllamav2 import ExLlamaV2DeviceTensors

Expand All @@ -522,10 +504,14 @@ def gptqmodel_post_init(model, use_act_order: bool, max_input_length: Optional[i
# have persistent buffers, otherwise we will get OOM
model.device_tensors = device_tensors

for _, submodule in model.named_modules():
if isinstance(submodule, BaseQuantLinear) and submodule.QUANT_TYPE == "exllamav2":
device = submodule.qweight.device
submodule.post_init(temp_dq=model.device_tensors[device])
# The buffers need to have been initialized first before calling make_q4.
for _, submodule in model.named_modules():
if isinstance(submodule, ExllamaV2QuantLinear):
device = submodule.qweight.device
submodule.post_init(temp_dq=model.device_tensors[device])
elif isinstance(submodule, BaseQuantLinear):
submodule.post_init()

torch.cuda.empty_cache()

return model
Expand Down