-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
ADJason
committed
Aug 4, 2018
0 parents
commit dd4cb52
Showing
7 changed files
with
655 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
.ipynb_checkpoints/ | ||
/WEIGHTS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Seed for reproducibility" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"np.random.seed(42)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Import Libraries" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import keras\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from keras.datasets import mnist\n", | ||
"from keras.models import Sequential, model_from_json\n", | ||
"from keras.layers import Conv2D, Flatten, Dense, MaxPooling2D, Dropout\n", | ||
"from keras.optimizers import SGD, Adam" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Load data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"(X_train, y_train),(X_test, y_test) = mnist.load_data()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Preprocessing Data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train = X_train.reshape(60000, 28, 28, 1).astype('float32')\n", | ||
"X_test = X_test.reshape(10000, 28, 28, 1).astype('float32')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train /= 255\n", | ||
"X_test /= 255" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"n_classes = 10" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"y_train = keras.utils.to_categorical(y_train, n_classes)\n", | ||
"y_test = keras.utils.to_categorical(y_test, n_classes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Defining Neural Network Architecture" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model = Sequential()\n", | ||
"model.add(Conv2D(32,kernel_size=(3,3),activation='relu', input_shape=(28,28,1)))\n", | ||
"model.add(Conv2D(64,kernel_size=(3,3),activation='relu'))\n", | ||
"model.add(MaxPooling2D(pool_size=(2,2)))\n", | ||
"model.add(Dropout(0.25))\n", | ||
"model.add(Flatten())\n", | ||
"model.add(Dense(128, activation='relu'))\n", | ||
"model.add(Dropout(0.5))\n", | ||
"model.add(Dense(n_classes, activation='softmax'))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"_________________________________________________________________\n", | ||
"Layer (type) Output Shape Param # \n", | ||
"=================================================================\n", | ||
"conv2d_1 (Conv2D) (None, 26, 26, 32) 320 \n", | ||
"_________________________________________________________________\n", | ||
"conv2d_2 (Conv2D) (None, 24, 24, 64) 18496 \n", | ||
"_________________________________________________________________\n", | ||
"max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0 \n", | ||
"_________________________________________________________________\n", | ||
"dropout_1 (Dropout) (None, 12, 12, 64) 0 \n", | ||
"_________________________________________________________________\n", | ||
"flatten_1 (Flatten) (None, 9216) 0 \n", | ||
"_________________________________________________________________\n", | ||
"dense_1 (Dense) (None, 128) 1179776 \n", | ||
"_________________________________________________________________\n", | ||
"dropout_2 (Dropout) (None, 128) 0 \n", | ||
"_________________________________________________________________\n", | ||
"dense_2 (Dense) (None, 10) 1290 \n", | ||
"=================================================================\n", | ||
"Total params: 1,199,882\n", | ||
"Trainable params: 1,199,882\n", | ||
"Non-trainable params: 0\n", | ||
"_________________________________________________________________\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"model.summary()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Compile Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Train Model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Train on 60000 samples, validate on 10000 samples\n", | ||
"Epoch 1/10\n", | ||
"60000/60000 [==============================] - 156s 3ms/step - loss: 0.2395 - acc: 0.9271 - val_loss: 0.0507 - val_acc: 0.9840\n", | ||
"Epoch 2/10\n", | ||
"60000/60000 [==============================] - 161s 3ms/step - loss: 0.0848 - acc: 0.9753 - val_loss: 0.0422 - val_acc: 0.9864\n", | ||
"Epoch 3/10\n", | ||
"60000/60000 [==============================] - 1925s 32ms/step - loss: 0.0638 - acc: 0.9803 - val_loss: 0.0369 - val_acc: 0.9881\n", | ||
"Epoch 4/10\n", | ||
"60000/60000 [==============================] - 160s 3ms/step - loss: 0.0528 - acc: 0.9839 - val_loss: 0.0315 - val_acc: 0.9894\n", | ||
"Epoch 5/10\n", | ||
"60000/60000 [==============================] - 163s 3ms/step - loss: 0.0454 - acc: 0.9855 - val_loss: 0.0287 - val_acc: 0.9912\n", | ||
"Epoch 6/10\n", | ||
"60000/60000 [==============================] - 169s 3ms/step - loss: 0.0397 - acc: 0.9873 - val_loss: 0.0313 - val_acc: 0.9903\n", | ||
"Epoch 7/10\n", | ||
"60000/60000 [==============================] - 163s 3ms/step - loss: 0.0352 - acc: 0.9889 - val_loss: 0.0269 - val_acc: 0.9915\n", | ||
"Epoch 8/10\n", | ||
"60000/60000 [==============================] - 169s 3ms/step - loss: 0.0297 - acc: 0.9905 - val_loss: 0.0250 - val_acc: 0.9929\n", | ||
"Epoch 9/10\n", | ||
"60000/60000 [==============================] - 180s 3ms/step - loss: 0.0299 - acc: 0.9904 - val_loss: 0.0274 - val_acc: 0.9916\n", | ||
"Epoch 10/10\n", | ||
"60000/60000 [==============================] - 178s 3ms/step - loss: 0.0252 - acc: 0.9919 - val_loss: 0.0290 - val_acc: 0.9913\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<keras.callbacks.History at 0x7f149fe21278>" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"model.fit(X_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=[X_test, y_test])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Saving Model data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model.save_weights('WEIGHTS/Model_LeNet_weights.h5')\n", | ||
"with open('WEIGHTS/MODEL_ARCHITECTURE.json','w') as m:\n", | ||
" m.write(model.to_json())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"#### Loading Model data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with open('WEIGHTS/MODEL_ARCHITECTURE.json','r') as m:\n", | ||
" mo = model_from_json(m.read())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"mo.load_weights('WEIGHTS/Model_LeNet_weights.h5')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"from keras.datasets import mnist\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"(X_train, y_train),(X_test, y_test) = mnist.load_data()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def getDigit(no):\n", | ||
" index = np.argmax(y_train == no)\n", | ||
" sample_img = X_train[index]\n", | ||
" plt.imsave(f'images/sample_{no}.jpg',sample_img,cmap='gray')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"getDigit(9)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.6.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.