Skip to content

FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection

Notifications You must be signed in to change notification settings

MoyoG/FishEye8K

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 

Repository files navigation

FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection

Authors: Munkhjargal Gochoo, Munkh-Erdene Otgonbold, Erkhembayar Ganbold, Ming-Ching Chang, Ping-Yang Chen, Byambaa Dorj, Hamad Al Jassmi, Ganzorig Batnasan, Fady Alnajjar, Mohammed Abduljabbar, Fang-Pang Lin, Jun-Wei Hsieh

We provide detailed information on the new FishEye8K road object detection dataset. The dataset consists of 8,000 annotated images with 157K bounding boxes of five object classes. The figure displays sample images from each of the 18 cameras with wide-angle fisheye views. These cameras offer new possibilities for extensive coverage.

Results of YOLOv7-E6E model on the input size 1280x1280.

concatedVideo_Trim2.mp4

Classes (Color)

  • #FF3333 - Bus
  • #3358FF - Bike
  • #33FF33 - Car
  • #F6FF33 - Pedestrian
  • #9F33FF - Truck

Dataset

FishEye8K download

  • Note: If you downloaded the older version Fisheye8K_all_including_train&test_1.zip before Jan 28, MS COCO (train.json and test.json) labels should be replaced with these updated versions Click here to download correct MS COCO labels

Paper

Train and Test

Experimental results

We evaluated using default yolo test.py

  • conf_thres=0.5
  • iou_thres=0.5
Model Version Input Size Precision Recall mAP0.5 mAP.5-.95 f1-score APS APM APL Inference[ms]
YOLOv5 YOLOv5l6 1280 0.7929 0.4076 0.6139 0.4098 0.535 0.1299 0.434 0.6665 22.7
YOLOv5x6 1280 0.8224 0.4313 0.6387 0.4268 0.5588 0.133 0.452 0.6925 43.9
YOLOR YOLOR-W6 1280 0.7871 0.4718 0.6466 0.4442 0.5899 0.1325 0.4707 0.6901 16.4
YOLOR-P6 1280 0.8019 0.4937 0.6632 0.4406 0.6111 0.1419 0.4805 0.7216 13.4
YOLOv7 YOLOv7-D6 1280 0.7803 0.4111 0.3977 0.2633 0.5197 0.1261 0.4462 0.6777 26.4
YOLOv7-E6E 1280 0.8005 0.5252 0.5081 0.3265 0.6294 0.1684 0.5019 0.6927 29.8
YOLOv7 YOLOv7 640 0.7917 0.4373 0.4235 0.2473 0.5453 0.1108 0.4438 0.6804 4.3
YOLOv7-X 640 0.7402 0.4888 0.4674 0.2919 0.5794 0.1332 0.4605 0.7212 6.7
YOLOv8 YOLOv8l 640 0.7835 0.3877 0.612 0.4012 0.5187 0.1038 0.4043 0.6577 8.5
YOLOv8x 640 0.8418 0.3665 0.6146 0.4029 0.5106 0.0997 0.4147 0.7083 13.4

Citation

@InProceedings{Gochoo_2023_CVPR,
    author    = {Gochoo, Munkhjargal and Otgonbold, Munkh-Erdene and Ganbold, Erkhembayar and Hsieh, Jun-Wei and Chang, Ming-Ching and Chen, Ping-Yang and Dorj, Byambaa and Al Jassmi, Hamad and Batnasan, Ganzorig and Alnajjar, Fady and Abduljabbar, Mohammed and Lin, Fang-Pang},
    title     = {FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2023},
    pages     = {5304-5312}
}

About

FishEye8K: A Benchmark and Dataset for Fisheye Camera Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages