Skip to content

Mr-Bigworth/MMCA

Repository files navigation

Visual Grounding with Multi-modal Conditional Adaptation (MMCA)

Visual Grounding with Multi-modal Conditional Adaptation, ACMMM (Oral), 2024.

by Ruilin Yao, Shengwu Xiong, Yichen Zhao, Yi Rong*

Update on 2024/9/7: We have submitted a basic version of MMCA based on Transvg, welcome to use and provide feedback!

Update on 2024/7/31: This paper has been accepted by the ACM Multimedia 2024 (Oral). Our code will be released soon!

Getting Started

Please refer to GETTING_STARGTED.md to learn how to prepare the datasets and pretrained checkpoints.

Model Zoo

The models with ResNet-50 backbone and ResNet-101 backbone are available in [Gdrive]

Training and Evaluation

  1. Training

    CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env train.py --batch_size 32 --lr_bert 0.00001 --aug_crop --aug_scale --aug_translate --backbone resnet50 --detr_model ./checkpoints/detr-r50-referit.pth --bert_enc_num 12 --detr_enc_num 6 --dataset referit --max_query_len 20 --output_dir outputs/referit_r50 --epochs 90 --lr_drop 60
    

    We recommend to set --max_query_len 40 for RefCOCOg, and --max_query_len 20 for other datasets.

    We recommend to set --epochs 180 (--lr_drop 120 acoordingly) for RefCOCO+, and --epochs 90 (--lr_drop 60 acoordingly) for other datasets.

  2. Evaluation

    CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env eval.py --batch_size 32 --num_workers 4 --bert_enc_num 12 --detr_enc_num 6 --backbone resnet50 --dataset referit --max_query_len 20 --eval_set test --eval_model ./outputs/referit_r50/best_checkpoint.pth --output_dir ./outputs/referit_r50
    

Acknowledge

This codebase is partially based on ReSC, DETR and TransVG.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published