Skip to content

Multiklife/UnifiedObserverLib

Repository files navigation

UnifiedObserverLib

UnifiedObserverLib is a comprehensive Python library implementing the Unified Observer concept for advanced AI and machine learning applications. It provides tools for quantum-inspired neural networks, predictive modeling, ethical evaluation, and much more.

Installation

You can install UnifiedObserverLib using pip:

pip install unified-observer-lib

Features

  • Unified Observer framework
  • Quantum-inspired neural networks
  • Self-observing optimization
  • Reality wave function modeling
  • Phase transition and catastrophe theory analysis
  • Topological and multifractal analysis
  • Entropy analysis
  • Advanced visualization tools
  • Ethical evaluation
  • Distributed computing support
  • Quantum machine learning integration

Core Components

UnifiedObserver

The central class that implements the Unified Observer concept.

from unified_observer_lib import UnifiedObserver

uo = UnifiedObserver(initial_q=0.5, initial_tau=0, use_gpu=False, precision=53)
uo.observe(data)
state = uo.get_state()

RealityWaveFunction

Represents the wave function of reality in the Unified Observer framework.

from unified_observer_lib import RealityWaveFunction

rwf = RealityWaveFunction(unified_observer)
psi = rwf.psi_R(q, tau)
evolved_psi = rwf.evolve(delta_tau)

QuantumNN

A quantum-inspired neural network for advanced machine learning tasks.

from unified_observer_lib import QuantumNN

qnn = QuantumNN(layer_sizes=[64, 32, 1], activation='tanh', use_phase=True)
output = qnn(input_data)

Analysis Tools

PhaseTransitionAnalyzer

Analyzes phase transitions in the system's behavior.

from unified_observer_lib import PhaseTransitionAnalyzer

analyzer = PhaseTransitionAnalyzer(unified_observer)
transitions = analyzer.analyze_observer_transitions()

EntropyAnalyzer

Computes various entropy measures for the system.

from unified_observer_lib import EntropyAnalyzer

entropy_analyzer = EntropyAnalyzer(unified_observer)
entropy_results = entropy_analyzer.analyze_observer_entropy()

TopologicalAnalyzer

Performs topological data analysis on the system's state.

from unified_observer_lib import TopologicalAnalyzer

topo_analyzer = TopologicalAnalyzer(max_dimension=2)
result = topo_analyzer.analyze_observer_topology(unified_observer)

Visualization

AdvancedVisualizer

Provides advanced visualization tools for the Unified Observer system.

from unified_observer_lib import AdvancedVisualizer

visualizer = AdvancedVisualizer(unified_observer)
visualizer.plot_parameter_evolution(num_steps=1000)
visualizer.plot_wave_function(reality_wave_function, q_range=(0, 1), tau_range=(0, 10))
visualizer.plot_multidimensional_state()

Example Usage

Here's a more comprehensive example that demonstrates how to use UnifiedObserverLib:

from unified_observer_lib import UnifiedObserver, PredictiveModel, PhaseTransitionAnalyzer, AdvancedVisualizer
import numpy as np

# Create a Unified Observer
uo = UnifiedObserver(initial_q=0.5, initial_tau=0)

# Create a predictive model
model = PredictiveModel(uo, nn_layer_sizes=[64, 32, 1])

# Generate some example data
X = np.random.randn(1000, 10)
y = np.sin(X[:, 0]) + 0.1 * np.random.randn(1000)

# Train the model
model.train(X, y, epochs=100, batch_size=32)

# Make predictions
X_test = np.random.randn(100, 10)
predictions = model.predict(X_test, future_tau=5)

# Analyze phase transitions
analyzer = PhaseTransitionAnalyzer(uo)
transitions = analyzer.analyze_observer_transitions()

# Visualize results
visualizer = AdvancedVisualizer(uo)
visualizer.plot_parameter_evolution(num_steps=1000)
visualizer.plot_multidimensional_state()

print(f"Predictions: {predictions[:5]}")
print(f"Detected {len(transitions)} phase transitions")

Contributing

Contributions to UnifiedObserverLib are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published