Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add integration tests #310

Merged
merged 18 commits into from
Jul 12, 2022
Merged

Conversation

radekosmulski
Copy link
Contributor

@radekosmulski radekosmulski commented May 13, 2022

Should be good to go now, I left a bunch of comments in the associated issue

resolves #214

* unit test to now respect NUM_ROWS env var
* unit test can now be run in a single docker container with different
NUM_ROWS values (hopefully, different data overall)
@review-notebook-app
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 83bb4a4a82a88e0084f33c3b8727114993cca849, no merge conflicts.
Running as SYSTEM
Setting status of 83bb4a4a82a88e0084f33c3b8727114993cca849 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/84/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 83bb4a4a82a88e0084f33c3b8727114993cca849^{commit} # timeout=10
Checking out Revision 83bb4a4a82a88e0084f33c3b8727114993cca849 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 83bb4a4a82a88e0084f33c3b8727114993cca849 # timeout=10
Commit message: "minor tweaks to the unit test"
 > git rev-list --no-walk c021dca3f3b3c3b4f22a5dbdac6d169794e62b43 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins5359037390836984114.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item

tests/unit/test_version.py . [100%]

============================== 1 passed in 0.01s ===============================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins2642065406163582113.sh

@github-actions
Copy link

Documentation preview

https://nvidia-merlin.github.io/Merlin/review/pr-310

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 65e67e4210ab9c51f3a29aaa57908f8007037c13, no merge conflicts.
Running as SYSTEM
Setting status of 65e67e4210ab9c51f3a29aaa57908f8007037c13 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/86/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 65e67e4210ab9c51f3a29aaa57908f8007037c13^{commit} # timeout=10
Checking out Revision 65e67e4210ab9c51f3a29aaa57908f8007037c13 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 65e67e4210ab9c51f3a29aaa57908f8007037c13 # timeout=10
Commit message: "add integration tests"
 > git rev-list --no-walk 0b30e36dff54652a29ff907b2bd4db0d9cdf44a5 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins5381974920103876364.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item

tests/unit/test_version.py . [100%]

============================== 1 passed in 0.02s ===============================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins638293088207858014.sh

@bschifferer bschifferer self-requested a review May 16, 2022 07:11
@radekosmulski
Copy link
Contributor Author

Finally! 🥳

This is now passing on ngc, works okay with a 32GB GPU. Both the unit and integration tests run okay.

@bschifferer this is good to go AFAICT 🙂

From https://github.com/NVIDIA-Merlin/Merlin
 * [new ref]         refs/pull/310/head -> add_integration_test
Switched to branch 'add_integration_test'
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.1, pluggy-1.0.0
rootdir: /Merlin
plugins: anyio-3.6.1
collected 2 items

tests/examples/unit/test_building_deploying_multi_stage_RecSys.py ..     [100%]

======================== 2 passed in 163.13s (0:02:43) =========================
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.1, pluggy-1.0.0
rootdir: /Merlin
plugins: anyio-3.6.1
collected 2 items

tests/examples/integration/test_building_deploying_multi_stage_RecSys.py . [ 50%]
.                                                                        [100%]

======================== 2 passed in 2963.12s (0:49:23) ========================

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 7baaffeaf1b3540abf8034fa3705d0d824693aae, no merge conflicts.
Running as SYSTEM
Setting status of 7baaffeaf1b3540abf8034fa3705d0d824693aae to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/99/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 7baaffeaf1b3540abf8034fa3705d0d824693aae^{commit} # timeout=10
Checking out Revision 7baaffeaf1b3540abf8034fa3705d0d824693aae (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 7baaffeaf1b3540abf8034fa3705d0d824693aae # timeout=10
Commit message: "set minimal NUM_ROWS for neccessary features to be generated"
 > git rev-list --no-walk 57bbeeaaab6333aaf4fc3a62d4635b98a85444fe # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins246541060742489711.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item

tests/unit/test_version.py . [100%]

============================== 1 passed in 0.02s ===============================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins1426532308873510135.sh

Copy link
Contributor

@bschifferer bschifferer left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we keep it as one unittest? because they depend on each other?

/ "examples/Building-and-deploying-multi-stage-RecSys/02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
execute=False
)
def test_nb2(tb):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the original unittest was one unittest and this one is splitted into two.

The 2nd unittest depends on artificats from the first unittest. That's the reason we decided to have it as one unittest. If the unittests are executed in a different order and/or only the 2nd one is executed, it will fail. I think it should be one unittest?

Copy link
Contributor Author

@radekosmulski radekosmulski May 26, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That's a good point! I didn't realize we were keeping these test together due to the dependency issue, you are right. Will revert to how it was before.

The problem I encountered which prompted this change was that now with running on much bigger data I was running out of GPU RAM when this was a single test. But maybe this was due to some other issue in the code at that time.

Will switch to this being a single test, rerun the code on a 32GB GPU on ngc and if there will be issues will see if I can shutdown the first NB or clear the state via some other means when running the 2nd one.

@radekosmulski
Copy link
Contributor Author

radekosmulski commented May 27, 2022

Finally got this to pass on an ngc instance with a 32 GPU 🙂

The integration test is formatted rather weirdly, but that is because regardless of what I tried, I was getting an OOM error. If the first notebook is used in the decorator, no matter what I tried, the state was retained inside the function after the execution of tb1 finishes. The only way I managed to free up GPU memory was through the use of the context manager for the first notebook.

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit d02b886ca617b4c50d6c0ca212a2a94e643c2273, no merge conflicts.
Running as SYSTEM
Setting status of d02b886ca617b4c50d6c0ca212a2a94e643c2273 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/184/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse d02b886ca617b4c50d6c0ca212a2a94e643c2273^{commit} # timeout=10
Checking out Revision d02b886ca617b4c50d6c0ca212a2a94e643c2273 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f d02b886ca617b4c50d6c0ca212a2a94e643c2273 # timeout=10
Commit message: "remove old file"
 > git rev-list --no-walk 78e5517833cdeee3098c0dfee21b533574367266 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins14877655528659584999.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item / 1 skipped

tests/unit/test_version.py . [100%]

========================= 1 passed, 1 skipped in 3.12s =========================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins1646267679238377974.sh

@bschifferer bschifferer changed the base branch from main to add_integration_test June 21, 2022 11:36
@bschifferer bschifferer changed the base branch from add_integration_test to main June 21, 2022 11:36
@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit d02b886ca617b4c50d6c0ca212a2a94e643c2273, no merge conflicts.
Running as SYSTEM
Setting status of d02b886ca617b4c50d6c0ca212a2a94e643c2273 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/185/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse d02b886ca617b4c50d6c0ca212a2a94e643c2273^{commit} # timeout=10
Checking out Revision d02b886ca617b4c50d6c0ca212a2a94e643c2273 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f d02b886ca617b4c50d6c0ca212a2a94e643c2273 # timeout=10
Commit message: "remove old file"
 > git rev-list --no-walk d02b886ca617b4c50d6c0ca212a2a94e643c2273 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins7431155745880002146.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item / 1 skipped

tests/unit/test_version.py . [100%]

========================= 1 passed, 1 skipped in 2.54s =========================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins4280530852052919361.sh

@bschifferer bschifferer requested a review from rnyak June 21, 2022 11:37
@bschifferer bschifferer added examples Adding new examples ci labels Jun 21, 2022
@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit d02b886ca617b4c50d6c0ca212a2a94e643c2273, no merge conflicts.
Running as SYSTEM
Setting status of d02b886ca617b4c50d6c0ca212a2a94e643c2273 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/186/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse d02b886ca617b4c50d6c0ca212a2a94e643c2273^{commit} # timeout=10
Checking out Revision d02b886ca617b4c50d6c0ca212a2a94e643c2273 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f d02b886ca617b4c50d6c0ca212a2a94e643c2273 # timeout=10
Commit message: "remove old file"
 > git rev-list --no-walk d02b886ca617b4c50d6c0ca212a2a94e643c2273 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins6875966861059290728.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 1 item / 1 skipped

tests/unit/test_version.py . [100%]

========================= 1 passed, 1 skipped in 2.38s =========================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins15501663050573443125.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 312309d857c8f0a00dc2cbb103404a947235da9e, no merge conflicts.
Running as SYSTEM
Setting status of 312309d857c8f0a00dc2cbb103404a947235da9e to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/188/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 312309d857c8f0a00dc2cbb103404a947235da9e^{commit} # timeout=10
Checking out Revision 312309d857c8f0a00dc2cbb103404a947235da9e (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 312309d857c8f0a00dc2cbb103404a947235da9e # timeout=10
Commit message: "remove test_integration.sh"
 > git rev-list --no-walk 5b85d03a3b7168e24aca9b93d54f62c6956bdb0b # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins10113514030964541433.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7ff2f1a5e040>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7ff2f1a5e040>, {'id': '05da4bf7', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7ff2f1a590c0>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7ff2f1a5e040>
cell = {'id': '05da4bf7', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-22T11:12:03.337671Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7ff2f1a5e040>
cell = {'id': '05da4bf7', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-22T11:12:03.337671Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '4da0...e, 'engine': '4da0f9f0-bcab-4351-a6d5-395353f688ee', 'started': '2022-06-22T11:12:03.338048Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7ff2f1a5e040>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-22 11:11:02.995939: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-22 11:11:05.029685: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-22 11:11:05.030445: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 254 points to 32 centroids: please provide at least 1248 training points
2022-06-22 11:11:56.631042: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-22 11:11:58.642098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-22 11:11:58.642851: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0622 11:12:03.668316 2059 tensorflow.cc:2176] TRITONBACKEND_Initialize: tensorflow
I0622 11:12:03.668415 2059 tensorflow.cc:2186] Triton TRITONBACKEND API version: 1.8
I0622 11:12:03.668422 2059 tensorflow.cc:2192] 'tensorflow' TRITONBACKEND API version: 1.8
I0622 11:12:03.668428 2059 tensorflow.cc:2216] backend configuration:
{"cmdline":{"version":"2"}}
I0622 11:12:03.857147 2059 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f500e000000' with size 268435456
I0622 11:12:03.857861 2059 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0622 11:12:03.865482 2059 model_repository_manager.cc:997] loading: 1_predicttensorflow:1
I0622 11:12:03.965809 2059 model_repository_manager.cc:997] loading: 0_queryfeast:1
I0622 11:12:03.965927 2059 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0622 11:12:03.969488 2059 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
I0622 11:12:04.066121 2059 model_repository_manager.cc:997] loading: 2_queryfaiss:1
I0622 11:12:04.166442 2059 model_repository_manager.cc:997] loading: 3_queryfeast:1
I0622 11:12:04.266806 2059 model_repository_manager.cc:997] loading: 4_unrollfeatures:1
2022-06-22 11:12:04.341809: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:04.346019: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-22 11:12:04.346047: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:04.346157: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
I0622 11:12:04.367145 2059 model_repository_manager.cc:997] loading: 5_predicttensorflow:1
2022-06-22 11:12:04.394809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12899 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-22 11:12:04.429585: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
I0622 11:12:04.468547 2059 model_repository_manager.cc:997] loading: 6_softmaxsampling:1
2022-06-22 11:12:04.487072: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:04.519396: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 177601 microseconds.
I0622 11:12:04.519671 2059 model_repository_manager.cc:1152] successfully loaded '1_predicttensorflow' version 1
I0622 11:12:04.524730 2059 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0622 11:12:04.525950 2059 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0622 11:12:06.772355 2059 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0622 11:12:06.772588 2059 model_repository_manager.cc:1152] successfully loaded '0_queryfeast' version 1
I0622 11:12:09.118471 2059 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0622 11:12:09.120125 2059 model_repository_manager.cc:1152] successfully loaded '2_queryfaiss' version 1
I0622 11:12:11.362404 2059 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0622 11:12:11.362537 2059 model_repository_manager.cc:1152] successfully loaded '3_queryfeast' version 1
I0622 11:12:13.366985 2059 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0622 11:12:13.367230 2059 model_repository_manager.cc:1152] successfully loaded '4_unrollfeatures' version 1
2022-06-22 11:12:13.368761: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:13.382925: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-22 11:12:13.382967: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:13.385277: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12899 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-22 11:12:13.407142: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-22 11:12:13.563293: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-22 11:12:13.613389: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 244640 microseconds.
I0622 11:12:13.613641 2059 model_repository_manager.cc:1152] successfully loaded '5_predicttensorflow' version 1
I0622 11:12:13.615330 2059 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0622 11:12:15.630100 2059 model_repository_manager.cc:1152] successfully loaded '6_softmaxsampling' version 1
I0622 11:12:15.633808 2059 model_repository_manager.cc:997] loading: ensemble_model:1
I0622 11:12:15.734393 2059 model_repository_manager.cc:1152] successfully loaded 'ensemble_model' version 1
I0622 11:12:15.734557 2059 server.cc:524]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0622 11:12:15.734692 2059 server.cc:551]
+------------+-----------------------------------------------------------------+-----------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+-----------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"version":"2"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {} |
+------------+-----------------------------------------------------------------+-----------------------------+

I0622 11:12:15.734818 2059 server.cc:594]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0622 11:12:15.783888 2059 metrics.cc:651] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0622 11:12:15.785574 2059 tritonserver.cc:1962]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.20.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0622 11:12:15.786868 2059 grpc_server.cc:4421] Started GRPCInferenceService at 0.0.0.0:8001
I0622 11:12:15.787342 2059 http_server.cc:3113] Started HTTPService at 0.0.0.0:8000
I0622 11:12:15.828546 2059 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0622 11:12:16.801633 2059 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0622 11:12:17.801839 2059 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0622 11:12:18.819736 2059 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
0622 11:12:18.905201 2221 pb_stub.cc:419] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0622 11:12:18.909821 2059 server.cc:252] Waiting for in-flight requests to complete.
I0622 11:12:18.909854 2059 model_repository_manager.cc:1029] unloading: ensemble_model:1
I0622 11:12:18.909961 2059 model_repository_manager.cc:1029] unloading: 6_softmaxsampling:1
I0622 11:12:18.910076 2059 model_repository_manager.cc:1029] unloading: 5_predicttensorflow:1
I0622 11:12:18.910114 2059 model_repository_manager.cc:1135] successfully unloaded 'ensemble_model' version 1
I0622 11:12:18.910205 2059 model_repository_manager.cc:1029] unloading: 4_unrollfeatures:1
I0622 11:12:18.910261 2059 model_repository_manager.cc:1029] unloading: 3_queryfeast:1
I0622 11:12:18.910279 2059 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0622 11:12:18.910370 2059 model_repository_manager.cc:1029] unloading: 2_queryfaiss:1
I0622 11:12:18.910461 2059 model_repository_manager.cc:1029] unloading: 1_predicttensorflow:1
I0622 11:12:18.910464 2059 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0622 11:12:18.910536 2059 model_repository_manager.cc:1029] unloading: 0_queryfeast:1
I0622 11:12:18.910611 2059 server.cc:267] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0622 11:12:18.910684 2059 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0622 11:12:18.910864 2059 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0622 11:12:18.922996 2059 model_repository_manager.cc:1135] successfully unloaded '1_predicttensorflow' version 1
I0622 11:12:18.933256 2059 model_repository_manager.cc:1135] successfully unloaded '5_predicttensorflow' version 1
I0622 11:12:19.910715 2059 server.cc:267] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0622 11:12:20.361250 2059 model_repository_manager.cc:1135] successfully unloaded '6_softmaxsampling' version 1
I0622 11:12:20.536863 2059 model_repository_manager.cc:1135] successfully unloaded '2_queryfaiss' version 1
I0622 11:12:20.540184 2059 model_repository_manager.cc:1135] successfully unloaded '4_unrollfeatures' version 1
I0622 11:12:20.910849 2059 server.cc:267] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0622 11:12:21.910988 2059 server.cc:267] Timeout 27: Found 2 live models and 0 in-flight non-inference requests
I0622 11:12:22.911124 2059 server.cc:267] Timeout 26: Found 2 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0622 11:12:23.911258 2059 server.cc:267] Timeout 25: Found 2 live models and 0 in-flight non-inference requests
I0622 11:12:24.099440 2059 model_repository_manager.cc:1135] successfully unloaded '0_queryfeast' version 1
I0622 11:12:24.911395 2059 server.cc:267] Timeout 24: Found 1 live models and 0 in-flight non-inference requests
I0622 11:12:25.911527 2059 server.cc:267] Timeout 23: Found 1 live models and 0 in-flight non-inference requests
I0622 11:12:26.911654 2059 server.cc:267] Timeout 22: Found 1 live models and 0 in-flight non-inference requests
I0622 11:12:27.911787 2059 server.cc:267] Timeout 21: Found 1 live models and 0 in-flight non-inference requests
I0622 11:12:28.911917 2059 server.cc:267] Timeout 20: Found 1 live models and 0 in-flight non-inference requests
I0622 11:12:29.912058 2059 server.cc:267] Timeout 19: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0622 11:12:30.845525 2059 model_repository_manager.cc:1135] successfully unloaded '3_queryfeast' version 1
I0622 11:12:30.912186 2059 server.cc:267] Timeout 18: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 100.06s (0:01:40) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins7900726579706697870.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 312309d857c8f0a00dc2cbb103404a947235da9e, no merge conflicts.
Running as SYSTEM
Setting status of 312309d857c8f0a00dc2cbb103404a947235da9e to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/192/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 312309d857c8f0a00dc2cbb103404a947235da9e^{commit} # timeout=10
Checking out Revision 312309d857c8f0a00dc2cbb103404a947235da9e (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 312309d857c8f0a00dc2cbb103404a947235da9e # timeout=10
Commit message: "remove test_integration.sh"
 > git rev-list --no-walk dc58221b596e045bad21191326e3a7cd17390894 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins789959489837985382.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f8de25a2430>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f8de25a2430>, {'id': 'cb8cd145', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f8de259d3c0>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f8de25a2430>
cell = {'id': 'cb8cd145', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-23T08:09:08.376878Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7f8de25a2430>
cell = {'id': 'cb8cd145', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-23T08:09:08.376878Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '8b76...e, 'engine': '8b76218b-fced-4ae1-bfba-cd335e4a8b1b', 'started': '2022-06-23T08:09:08.377178Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f8de25a2430>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-23 08:08:09.346894: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 08:08:11.359886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 08:08:11.360684: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 235 points to 32 centroids: please provide at least 1248 training points
2022-06-23 08:09:01.512515: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 08:09:03.549372: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 08:09:03.550146: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0623 08:09:08.716566 6672 tensorflow.cc:2176] TRITONBACKEND_Initialize: tensorflow
I0623 08:09:08.716649 6672 tensorflow.cc:2186] Triton TRITONBACKEND API version: 1.8
I0623 08:09:08.716657 6672 tensorflow.cc:2192] 'tensorflow' TRITONBACKEND API version: 1.8
I0623 08:09:08.716662 6672 tensorflow.cc:2216] backend configuration:
{"cmdline":{"version":"2"}}
I0623 08:09:08.916064 6672 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f5fe4000000' with size 268435456
I0623 08:09:08.916793 6672 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0623 08:09:08.924569 6672 model_repository_manager.cc:997] loading: 0_queryfeast:1
I0623 08:09:09.024835 6672 model_repository_manager.cc:997] loading: 1_predicttensorflow:1
I0623 08:09:09.032349 6672 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0623 08:09:09.125149 6672 model_repository_manager.cc:997] loading: 2_queryfaiss:1
I0623 08:09:09.225482 6672 model_repository_manager.cc:997] loading: 3_queryfeast:1
I0623 08:09:09.325831 6672 model_repository_manager.cc:997] loading: 4_unrollfeatures:1
I0623 08:09:09.426586 6672 model_repository_manager.cc:997] loading: 5_predicttensorflow:1
I0623 08:09:09.526928 6672 model_repository_manager.cc:997] loading: 6_softmaxsampling:1
I0623 08:09:11.657768 6672 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0623 08:09:11.658033 6672 model_repository_manager.cc:1152] successfully loaded '0_queryfeast' version 1
I0623 08:09:11.662219 6672 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0623 08:09:11.664614 6672 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-06-23 08:09:11.666269: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:11.675923: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-23 08:09:11.675987: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:11.676202: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 08:09:11.727743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12283 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 08:09:11.773834: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-23 08:09:11.831664: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:11.856627: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 190378 microseconds.
I0623 08:09:11.856749 6672 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0623 08:09:11.856838 6672 model_repository_manager.cc:1152] successfully loaded '1_predicttensorflow' version 1
I0623 08:09:14.237079 6672 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0623 08:09:14.238702 6672 model_repository_manager.cc:1152] successfully loaded '2_queryfaiss' version 1
I0623 08:09:16.487219 6672 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0623 08:09:16.487382 6672 model_repository_manager.cc:1152] successfully loaded '3_queryfeast' version 1
I0623 08:09:18.513482 6672 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0623 08:09:18.513652 6672 model_repository_manager.cc:1152] successfully loaded '4_unrollfeatures' version 1
2022-06-23 08:09:18.514761: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:18.530165: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-23 08:09:18.530202: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:18.532610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12283 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 08:09:18.555976: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-23 08:09:18.716934: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 08:09:18.768506: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 253754 microseconds.
I0623 08:09:18.768642 6672 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0623 08:09:18.768735 6672 model_repository_manager.cc:1152] successfully loaded '5_predicttensorflow' version 1
I0623 08:09:20.852227 6672 model_repository_manager.cc:1152] successfully loaded '6_softmaxsampling' version 1
I0623 08:09:20.857434 6672 model_repository_manager.cc:997] loading: ensemble_model:1
I0623 08:09:20.958219 6672 model_repository_manager.cc:1152] successfully loaded 'ensemble_model' version 1
I0623 08:09:20.958360 6672 server.cc:524]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0623 08:09:20.958449 6672 server.cc:551]
+------------+-----------------------------------------------------------------+-----------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+-----------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"version":"2"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {} |
+------------+-----------------------------------------------------------------+-----------------------------+

I0623 08:09:20.958532 6672 server.cc:594]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0623 08:09:21.005630 6672 metrics.cc:651] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0623 08:09:21.007374 6672 tritonserver.cc:1962]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.20.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0623 08:09:21.008460 6672 grpc_server.cc:4421] Started GRPCInferenceService at 0.0.0.0:8001
I0623 08:09:21.008969 6672 http_server.cc:3113] Started HTTPService at 0.0.0.0:8000
I0623 08:09:21.050315 6672 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0623 08:09:22.028960 6672 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0623 08:09:23.029159 6672 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0623 08:09:24.048764 6672 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
0623 08:09:25.992159 6890 pb_stub.cc:419] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0623 08:09:25.996518 6672 server.cc:252] Waiting for in-flight requests to complete.
I0623 08:09:25.996550 6672 model_repository_manager.cc:1029] unloading: ensemble_model:1
I0623 08:09:25.996666 6672 model_repository_manager.cc:1029] unloading: 6_softmaxsampling:1
I0623 08:09:25.996770 6672 model_repository_manager.cc:1029] unloading: 5_predicttensorflow:1
I0623 08:09:25.996796 6672 model_repository_manager.cc:1135] successfully unloaded 'ensemble_model' version 1
I0623 08:09:25.996918 6672 model_repository_manager.cc:1029] unloading: 4_unrollfeatures:1
I0623 08:09:25.996979 6672 model_repository_manager.cc:1029] unloading: 3_queryfeast:1
I0623 08:09:25.997005 6672 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0623 08:09:25.997129 6672 model_repository_manager.cc:1029] unloading: 2_queryfaiss:1
I0623 08:09:25.997228 6672 model_repository_manager.cc:1029] unloading: 1_predicttensorflow:1
I0623 08:09:25.997286 6672 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0623 08:09:25.997326 6672 model_repository_manager.cc:1029] unloading: 0_queryfeast:1
I0623 08:09:25.997431 6672 server.cc:267] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0623 08:09:25.997442 6672 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0623 08:09:25.997551 6672 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0623 08:09:26.004566 6672 model_repository_manager.cc:1135] successfully unloaded '1_predicttensorflow' version 1
I0623 08:09:26.022208 6672 model_repository_manager.cc:1135] successfully unloaded '5_predicttensorflow' version 1
I0623 08:09:26.997581 6672 server.cc:267] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0623 08:09:27.424383 6672 model_repository_manager.cc:1135] successfully unloaded '4_unrollfeatures' version 1
I0623 08:09:27.638259 6672 model_repository_manager.cc:1135] successfully unloaded '6_softmaxsampling' version 1
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0623 08:09:27.732558 6672 model_repository_manager.cc:1135] successfully unloaded '2_queryfaiss' version 1
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0623 08:09:27.997694 6672 server.cc:267] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0623 08:09:28.111312 6672 model_repository_manager.cc:1135] successfully unloaded '3_queryfeast' version 1
I0623 08:09:28.216435 6672 model_repository_manager.cc:1135] successfully unloaded '0_queryfeast' version 1
I0623 08:09:28.997831 6672 server.cc:267] Timeout 27: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
==================== 1 failed, 1 passed in 91.87s (0:01:31) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins7286144191507412012.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 312309d857c8f0a00dc2cbb103404a947235da9e, no merge conflicts.
Running as SYSTEM
Setting status of 312309d857c8f0a00dc2cbb103404a947235da9e to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/193/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 312309d857c8f0a00dc2cbb103404a947235da9e^{commit} # timeout=10
Checking out Revision 312309d857c8f0a00dc2cbb103404a947235da9e (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 312309d857c8f0a00dc2cbb103404a947235da9e # timeout=10
Commit message: "remove test_integration.sh"
 > git rev-list --no-walk 312309d857c8f0a00dc2cbb103404a947235da9e # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins14525379663961449664.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7fd1bdacbee0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7fd1bdacbee0>, {'id': '23b6f2ae', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7fd1bcf6d040>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7fd1bdacbee0>
cell = {'id': '23b6f2ae', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-23T09:30:26.758951Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7fd1bdacbee0>
cell = {'id': '23b6f2ae', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-23T09:30:26.758951Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '8b51...e, 'engine': '8b51aba4-d1e9-48f2-9b16-4f0f469a5580', 'started': '2022-06-23T09:30:26.759241Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7fd1bdacbee0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1295�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1293�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1294�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1295�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-23 09:29:15.617632: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 09:29:17.657144: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 09:29:17.657873: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 259 points to 32 centroids: please provide at least 1248 training points
2022-06-23 09:30:19.973091: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 09:30:21.996870: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 09:30:21.997619: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15157 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0623 09:30:27.089224 1596 tensorflow.cc:2176] TRITONBACKEND_Initialize: tensorflow
I0623 09:30:27.089326 1596 tensorflow.cc:2186] Triton TRITONBACKEND API version: 1.8
I0623 09:30:27.089333 1596 tensorflow.cc:2192] 'tensorflow' TRITONBACKEND API version: 1.8
I0623 09:30:27.089338 1596 tensorflow.cc:2216] backend configuration:
{"cmdline":{"version":"2"}}
I0623 09:30:27.288093 1596 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f6fd6000000' with size 268435456
I0623 09:30:27.288810 1596 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0623 09:30:27.296342 1596 model_repository_manager.cc:997] loading: 0_queryfeast:1
I0623 09:30:27.396690 1596 model_repository_manager.cc:997] loading: 1_predicttensorflow:1
I0623 09:30:27.404389 1596 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0623 09:30:27.496965 1596 model_repository_manager.cc:997] loading: 2_queryfaiss:1
I0623 09:30:27.597253 1596 model_repository_manager.cc:997] loading: 3_queryfeast:1
I0623 09:30:27.697615 1596 model_repository_manager.cc:997] loading: 4_unrollfeatures:1
I0623 09:30:27.798104 1596 model_repository_manager.cc:997] loading: 5_predicttensorflow:1
I0623 09:30:27.898412 1596 model_repository_manager.cc:997] loading: 6_softmaxsampling:1
I0623 09:30:30.066247 1596 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0623 09:30:30.066469 1596 model_repository_manager.cc:1152] successfully loaded '0_queryfeast' version 1
I0623 09:30:30.068471 1596 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-06-23 09:30:30.070203: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:30.082305: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-23 09:30:30.082407: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:30.082633: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-23 09:30:30.126503: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12646 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 09:30:30.170962: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-23 09:30:30.226703: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:30.251145: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 180969 microseconds.
I0623 09:30:30.251268 1596 tensorflow.cc:2276] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0623 09:30:30.251368 1596 model_repository_manager.cc:1152] successfully loaded '1_predicttensorflow' version 1
I0623 09:30:30.253976 1596 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0623 09:30:32.556094 1596 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0623 09:30:32.557590 1596 model_repository_manager.cc:1152] successfully loaded '2_queryfaiss' version 1
I0623 09:30:34.826599 1596 tensorflow.cc:2325] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0623 09:30:34.826814 1596 model_repository_manager.cc:1152] successfully loaded '3_queryfeast' version 1
2022-06-23 09:30:34.827598: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:34.845066: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-23 09:30:34.845111: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:34.847388: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12646 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-23 09:30:34.869976: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-23 09:30:35.022053: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-23 09:30:35.072837: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 245252 microseconds.
I0623 09:30:35.072984 1596 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0623 09:30:35.073063 1596 model_repository_manager.cc:1152] successfully loaded '5_predicttensorflow' version 1
I0623 09:30:37.051719 1596 python.cc:1903] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0623 09:30:37.051969 1596 model_repository_manager.cc:1152] successfully loaded '6_softmaxsampling' version 1
I0623 09:30:39.043821 1596 model_repository_manager.cc:1152] successfully loaded '4_unrollfeatures' version 1
I0623 09:30:39.048994 1596 model_repository_manager.cc:997] loading: ensemble_model:1
I0623 09:30:39.149823 1596 model_repository_manager.cc:1152] successfully loaded 'ensemble_model' version 1
I0623 09:30:39.150007 1596 server.cc:524]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0623 09:30:39.150133 1596 server.cc:551]
+------------+-----------------------------------------------------------------+-----------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+-----------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"version":"2"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {} |
+------------+-----------------------------------------------------------------+-----------------------------+

I0623 09:30:39.150251 1596 server.cc:594]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0623 09:30:39.198102 1596 metrics.cc:651] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0623 09:30:39.199754 1596 tritonserver.cc:1962]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.20.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0623 09:30:39.200765 1596 grpc_server.cc:4421] Started GRPCInferenceService at 0.0.0.0:8001
I0623 09:30:39.201284 1596 http_server.cc:3113] Started HTTPService at 0.0.0.0:8000
I0623 09:30:39.242636 1596 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0623 09:30:40.219781 1596 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0623 09:30:41.219991 1596 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0623 09:30:42.239229 1596 metrics.cc:469] Unable to get energy consumption for GPU 0. Status:Success, value:0
0623 09:30:42.339694 1754 pb_stub.cc:419] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: triton::backend::python::PbError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0623 09:30:42.343964 1596 server.cc:252] Waiting for in-flight requests to complete.
I0623 09:30:42.343979 1596 model_repository_manager.cc:1029] unloading: ensemble_model:1
I0623 09:30:42.344037 1596 model_repository_manager.cc:1029] unloading: 6_softmaxsampling:1
I0623 09:30:42.344110 1596 model_repository_manager.cc:1029] unloading: 5_predicttensorflow:1
I0623 09:30:42.344170 1596 model_repository_manager.cc:1029] unloading: 4_unrollfeatures:1
I0623 09:30:42.344221 1596 model_repository_manager.cc:1135] successfully unloaded 'ensemble_model' version 1
I0623 09:30:42.344299 1596 model_repository_manager.cc:1029] unloading: 3_queryfeast:1
I0623 09:30:42.344309 1596 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance stateI0623 09:30:42.344333 1596 model_repository_manager.cc:1029] unloading: 2_queryfaiss:1

I0623 09:30:42.344375 1596 model_repository_manager.cc:1029] unloading: 1_predicttensorflow:1
I0623 09:30:42.344425 1596 model_repository_manager.cc:1029] unloading: 0_queryfeast:1
I0623 09:30:42.344469 1596 server.cc:267] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0623 09:30:42.344553 1596 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0623 09:30:42.344606 1596 tensorflow.cc:2363] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0623 09:30:42.344805 1596 tensorflow.cc:2302] TRITONBACKEND_ModelFinalize: delete model state
I0623 09:30:42.359175 1596 model_repository_manager.cc:1135] successfully unloaded '1_predicttensorflow' version 1
I0623 09:30:42.369200 1596 model_repository_manager.cc:1135] successfully unloaded '5_predicttensorflow' version 1
I0623 09:30:43.344575 1596 server.cc:267] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0623 09:30:43.779894 1596 model_repository_manager.cc:1135] successfully unloaded '4_unrollfeatures' version 1
I0623 09:30:43.906801 1596 model_repository_manager.cc:1135] successfully unloaded '6_softmaxsampling' version 1
I0623 09:30:43.982326 1596 model_repository_manager.cc:1135] successfully unloaded '2_queryfaiss' version 1
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0623 09:30:44.344708 1596 server.cc:267] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0623 09:30:44.371438 1596 model_repository_manager.cc:1135] successfully unloaded '3_queryfeast' version 1
I0623 09:30:45.344841 1596 server.cc:267] Timeout 27: Found 1 live models and 0 in-flight non-inference requests
I0623 09:30:46.344971 1596 server.cc:267] Timeout 26: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0623 09:30:46.772879 1596 model_repository_manager.cc:1135] successfully unloaded '0_queryfeast' version 1
I0623 09:30:47.345107 1596 server.cc:267] Timeout 25: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 951, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 104.73s (0:01:44) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins14847088006866328421.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 726920d68e44235e299762efaaa197c84d54c8c5, no merge conflicts.
Running as SYSTEM
Setting status of 726920d68e44235e299762efaaa197c84d54c8c5 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/202/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 726920d68e44235e299762efaaa197c84d54c8c5^{commit} # timeout=10
Checking out Revision 726920d68e44235e299762efaaa197c84d54c8c5 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 726920d68e44235e299762efaaa197c84d54c8c5 # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk 5bbc1eb6712d321c7653e065a7ef353692b1c952 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins12539951437577628005.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f7b3c766c70>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f7b3c766c70>, {'id': '0fb4316f', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f7b3bba6040>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f7b3c766c70>
cell = {'id': '0fb4316f', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-27T07:43:39.184829Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7f7b3c766c70>
cell = {'id': '0fb4316f', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-27T07:43:39.184829Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '9327...e, 'engine': '9327ba5b-a2b6-4930-a482-d1730ebf30cd', 'started': '2022-06-27T07:43:39.185116Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f7b3c766c70>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-27 07:42:40.166227: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 07:42:42.162519: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 07:42:42.163201: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 242 points to 32 centroids: please provide at least 1248 training points
2022-06-27 07:43:32.261574: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 07:43:34.246174: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 07:43:34.246916: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0627 07:43:39.440820 2779 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f0726000000' with size 268435456
I0627 07:43:39.441611 2779 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0627 07:43:39.448889 2779 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0627 07:43:39.549252 2779 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0627 07:43:39.649508 2779 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0627 07:43:39.749817 2779 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0627 07:43:39.827891 2779 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0627 07:43:39.827928 2779 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0627 07:43:39.827935 2779 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0627 07:43:39.827941 2779 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0627 07:43:39.827972 2779 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0627 07:43:39.832860 2779 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
I0627 07:43:39.850128 2779 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0627 07:43:39.950447 2779 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0627 07:43:40.050749 2779 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
2022-06-27 07:43:40.182926: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:40.186989: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-27 07:43:40.187035: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:40.187134: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 07:43:40.234422: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 07:43:40.271263: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-27 07:43:40.351620: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:40.375572: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 192665 microseconds.
I0627 07:43:40.375788 2779 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0627 07:43:40.380486 2779 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0627 07:43:40.381799 2779 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0627 07:43:42.715436 2779 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0627 07:43:42.715658 2779 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0627 07:43:44.992897 2779 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0627 07:43:44.994655 2779 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0627 07:43:47.236749 2779 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0627 07:43:47.237091 2779 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0627 07:43:49.260546 2779 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0627 07:43:49.260968 2779 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-06-27 07:43:49.262127: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:49.286157: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-27 07:43:49.286190: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:49.288212: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 07:43:49.309746: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-27 07:43:49.465852: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 07:43:49.515632: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 253518 microseconds.
I0627 07:43:49.515775 2779 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0627 07:43:49.515858 2779 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0627 07:43:51.577925 2779 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0627 07:43:51.580821 2779 model_repository_manager.cc:1191] loading: ensemble_model:1
I0627 07:43:51.681537 2779 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0627 07:43:51.681685 2779 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0627 07:43:51.681797 2779 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0627 07:43:51.681919 2779 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0627 07:43:51.750636 2779 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0627 07:43:51.751505 2779 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0627 07:43:51.752297 2779 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0627 07:43:51.752503 2779 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0627 07:43:51.793323 2779 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0627 07:43:52.774702 2779 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 07:43:52.774758 2779 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0627 07:43:53.774916 2779 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 07:43:53.774971 2779 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0627 07:43:54.714364 3045 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0627 07:43:54.718677 2779 server.cc:257] Waiting for in-flight requests to complete.
I0627 07:43:54.718730 2779 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0627 07:43:54.718741 2779 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0627 07:43:54.718800 2779 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0627 07:43:54.718846 2779 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0627 07:43:54.718927 2779 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0627 07:43:54.718960 2779 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0627 07:43:54.718979 2779 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0627 07:43:54.719013 2779 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0627 07:43:54.719036 2779 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0627 07:43:54.719072 2779 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0627 07:43:54.719106 2779 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0627 07:43:54.719133 2779 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0627 07:43:54.719137 2779 server.cc:288] All models are stopped, unloading models
I0627 07:43:54.719195 2779 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0627 07:43:54.719250 2779 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0627 07:43:54.719410 2779 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0627 07:43:54.729749 2779 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0627 07:43:54.738771 2779 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
W0627 07:43:54.801399 2779 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 07:43:54.801447 2779 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
I0627 07:43:55.719322 2779 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0627 07:43:56.111219 2779 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0627 07:43:56.151141 2779 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0627 07:43:56.251824 2779 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0627 07:43:56.328623 2779 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0627 07:43:56.398525 2779 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0627 07:43:56.719497 2779 server.cc:295] Timeout 28: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
==================== 1 failed, 1 passed in 88.79s (0:01:28) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins5148931605307399093.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 726920d68e44235e299762efaaa197c84d54c8c5, no merge conflicts.
Running as SYSTEM
Setting status of 726920d68e44235e299762efaaa197c84d54c8c5 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/206/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 726920d68e44235e299762efaaa197c84d54c8c5^{commit} # timeout=10
Checking out Revision 726920d68e44235e299762efaaa197c84d54c8c5 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 726920d68e44235e299762efaaa197c84d54c8c5 # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk e3aba3baef65212324b6bbd99f3f05faf7d42924 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins13736146507602789816.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f9fb3ced970>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f9fb3ced970>, {'id': 'bae7ee69', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f9fb381e9c0>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f9fb3ced970>
cell = {'id': 'bae7ee69', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-27T20:25:49.083862Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7f9fb3ced970>
cell = {'id': 'bae7ee69', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-27T20:25:49.083862Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '5142...e, 'engine': '51426aac-cede-48dd-9321-71a171e1b1f2', 'started': '2022-06-27T20:25:49.084078Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f9fb3ced970>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-27 20:24:34.052523: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 20:24:36.065762: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 20:24:36.066532: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 245 points to 32 centroids: please provide at least 1248 training points
2022-06-27 20:25:42.092967: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 20:25:44.116460: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 20:25:44.117231: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0627 20:25:49.344494 13462 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f1626000000' with size 268435456
I0627 20:25:49.345325 13462 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0627 20:25:49.352558 13462 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0627 20:25:49.453071 13462 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0627 20:25:49.458955 13462 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0627 20:25:49.553421 13462 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0627 20:25:49.653657 13462 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0627 20:25:49.753890 13462 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0627 20:25:49.854182 13462 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0627 20:25:49.954430 13462 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
I0627 20:25:51.860234 13462 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0627 20:25:52.148304 13462 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0627 20:25:52.148339 13462 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0627 20:25:52.148346 13462 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0627 20:25:52.148352 13462 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0627 20:25:52.148389 13462 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0627 20:25:52.150482 13462 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0627 20:25:52.153087 13462 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-06-27 20:25:52.520912: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:52.524384: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-27 20:25:52.524408: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:52.524513: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-27 20:25:52.566527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 11017 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 20:25:52.614122: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-27 20:25:52.698805: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:52.722843: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 201951 microseconds.
I0627 20:25:52.722975 13462 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0627 20:25:52.723072 13462 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0627 20:25:55.261085 13462 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0627 20:25:55.261418 13462 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0627 20:25:57.646600 13462 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0627 20:25:57.646878 13462 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
2022-06-27 20:25:57.647328: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:57.665785: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-27 20:25:57.665852: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:57.668864: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 11017 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-27 20:25:57.708010: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-27 20:25:57.867082: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-27 20:25:57.920978: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 273662 microseconds.
I0627 20:25:57.921124 13462 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0627 20:25:57.921204 13462 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0627 20:26:00.085318 13462 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0627 20:26:00.085750 13462 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0627 20:26:02.248170 13462 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
I0627 20:26:02.250551 13462 model_repository_manager.cc:1191] loading: ensemble_model:1
I0627 20:26:02.351393 13462 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0627 20:26:02.351580 13462 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0627 20:26:02.351697 13462 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0627 20:26:02.351810 13462 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0627 20:26:02.417240 13462 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0627 20:26:02.418123 13462 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0627 20:26:02.418924 13462 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0627 20:26:02.419148 13462 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0627 20:26:02.460348 13462 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0627 20:26:03.436406 13462 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 20:26:03.436469 13462 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0627 20:26:04.436622 13462 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 20:26:04.436672 13462 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0627 20:26:05.456317 13462 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0627 20:26:05.456384 13462 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0627 20:26:05.632020 13719 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0627 20:26:05.636291 13462 server.cc:257] Waiting for in-flight requests to complete.
I0627 20:26:05.636345 13462 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0627 20:26:05.636363 13462 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0627 20:26:05.636461 13462 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0627 20:26:05.636524 13462 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0627 20:26:05.636578 13462 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0627 20:26:05.636626 13462 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0627 20:26:05.636693 13462 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0627 20:26:05.636731 13462 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0627 20:26:05.636789 13462 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0627 20:26:05.636868 13462 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0627 20:26:05.636934 13462 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0627 20:26:05.636947 13462 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0627 20:26:05.636976 13462 server.cc:288] All models are stopped, unloading models
I0627 20:26:05.637000 13462 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0627 20:26:05.637046 13462 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0627 20:26:05.637133 13462 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0627 20:26:05.645530 13462 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0627 20:26:05.658650 13462 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0627 20:26:06.637114 13462 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0627 20:26:07.047498 13462 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0627 20:26:07.107348 13462 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0627 20:26:07.289748 13462 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0627 20:26:07.637224 13462 server.cc:295] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0627 20:26:08.637356 13462 server.cc:295] Timeout 27: Found 2 live models and 0 in-flight non-inference requests
I0627 20:26:09.637492 13462 server.cc:295] Timeout 26: Found 2 live models and 0 in-flight non-inference requests
I0627 20:26:10.637631 13462 server.cc:295] Timeout 25: Found 2 live models and 0 in-flight non-inference requests
I0627 20:26:11.637771 13462 server.cc:295] Timeout 24: Found 2 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0627 20:26:11.966933 13462 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0627 20:26:12.637906 13462 server.cc:295] Timeout 23: Found 1 live models and 0 in-flight non-inference requests
I0627 20:26:13.638035 13462 server.cc:295] Timeout 22: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0627 20:26:14.536822 13462 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0627 20:26:14.638163 13462 server.cc:295] Timeout 21: Found 0 live models and 0 in-flight non-inference requests
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 114.76s (0:01:54) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins14119312828720253367.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 726920d68e44235e299762efaaa197c84d54c8c5, no merge conflicts.
Running as SYSTEM
Setting status of 726920d68e44235e299762efaaa197c84d54c8c5 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/207/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 726920d68e44235e299762efaaa197c84d54c8c5^{commit} # timeout=10
Checking out Revision 726920d68e44235e299762efaaa197c84d54c8c5 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 726920d68e44235e299762efaaa197c84d54c8c5 # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk 726920d68e44235e299762efaaa197c84d54c8c5 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins15044459486689579586.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7fd98f172970>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7fd98f172970>, {'id': '84fb4198', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7fd98e5e2940>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7fd98f172970>
cell = {'id': '84fb4198', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-29T16:25:15.314790Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7fd98f172970>
cell = {'id': '84fb4198', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-29T16:25:15.314790Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '88cf...e, 'engine': '88cf5953-fc98-4a0f-8599-931832ae533c', 'started': '2022-06-29T16:25:15.315054Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7fd98f172970>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-29 16:23:58.885963: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-29 16:24:00.875622: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-29 16:24:00.876379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 259 points to 32 centroids: please provide at least 1248 training points
2022-06-29 16:25:08.429419: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-29 16:25:10.411080: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-29 16:25:10.411823: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0629 16:25:15.578560 26197 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f53b6000000' with size 268435456
I0629 16:25:15.579290 26197 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0629 16:25:15.586355 26197 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0629 16:25:15.686710 26197 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0629 16:25:15.787014 26197 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0629 16:25:15.887324 26197 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0629 16:25:15.962040 26197 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0629 16:25:15.962077 26197 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0629 16:25:15.962084 26197 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0629 16:25:15.962090 26197 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0629 16:25:15.962126 26197 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0629 16:25:15.967279 26197 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
I0629 16:25:15.987619 26197 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0629 16:25:16.087943 26197 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0629 16:25:16.188260 26197 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
2022-06-29 16:25:16.314775: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:16.319177: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-29 16:25:16.319226: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:16.319328: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-29 16:25:16.363041: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12901 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-29 16:25:16.396838: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-29 16:25:16.479570: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:16.510113: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 195357 microseconds.
I0629 16:25:16.510380 26197 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0629 16:25:16.514237 26197 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0629 16:25:16.516283 26197 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0629 16:25:18.835391 26197 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0629 16:25:18.835637 26197 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0629 16:25:21.237515 26197 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0629 16:25:21.239147 26197 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0629 16:25:23.559619 26197 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0629 16:25:23.559895 26197 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0629 16:25:25.618713 26197 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0629 16:25:25.618961 26197 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-06-29 16:25:25.620367: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:25.638367: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-29 16:25:25.638407: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:25.640527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12901 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-29 16:25:25.662328: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-29 16:25:25.815247: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-29 16:25:25.865716: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 245359 microseconds.
I0629 16:25:25.865845 26197 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0629 16:25:25.865959 26197 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0629 16:25:27.918435 26197 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0629 16:25:27.921197 26197 model_repository_manager.cc:1191] loading: ensemble_model:1
I0629 16:25:28.021958 26197 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0629 16:25:28.022116 26197 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0629 16:25:28.022224 26197 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0629 16:25:28.022335 26197 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0629 16:25:28.086443 26197 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0629 16:25:28.087303 26197 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0629 16:25:28.088116 26197 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0629 16:25:28.088690 26197 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0629 16:25:28.129887 26197 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0629 16:25:29.108322 26197 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0629 16:25:29.108387 26197 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0629 16:25:30.108541 26197 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0629 16:25:30.108598 26197 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0629 16:25:31.128273 26197 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0629 16:25:31.128328 26197 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0629 16:25:34.845391 26454 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0629 16:25:34.850001 26197 server.cc:257] Waiting for in-flight requests to complete.
I0629 16:25:34.850036 26197 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0629 16:25:34.850047 26197 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0629 16:25:34.850113 26197 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0629 16:25:34.850165 26197 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0629 16:25:34.850226 26197 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0629 16:25:34.850284 26197 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0629 16:25:34.850306 26197 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0629 16:25:34.850361 26197 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0629 16:25:34.850410 26197 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0629 16:25:34.850456 26197 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0629 16:25:34.850524 26197 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0629 16:25:34.850573 26197 server.cc:288] All models are stopped, unloading models
I0629 16:25:34.850591 26197 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0629 16:25:34.850634 26197 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0629 16:25:34.850671 26197 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0629 16:25:34.850820 26197 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0629 16:25:34.863508 26197 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0629 16:25:34.872518 26197 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0629 16:25:35.850703 26197 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0629 16:25:36.244594 26197 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0629 16:25:36.428812 26197 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0629 16:25:36.457341 26197 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0629 16:25:36.850893 26197 server.cc:295] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0629 16:25:36.994546 26197 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0629 16:25:37.851016 26197 server.cc:295] Timeout 27: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:38.851145 26197 server.cc:295] Timeout 26: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:39.851285 26197 server.cc:295] Timeout 25: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:40.851415 26197 server.cc:295] Timeout 24: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:41.851548 26197 server.cc:295] Timeout 23: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:42.851681 26197 server.cc:295] Timeout 22: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:43.851814 26197 server.cc:295] Timeout 21: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0629 16:25:44.851947 26197 server.cc:295] Timeout 20: Found 1 live models and 0 in-flight non-inference requests
I0629 16:25:44.912277 26197 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0629 16:25:45.852076 26197 server.cc:295] Timeout 19: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 118.54s (0:01:58) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins13011005165503168498.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 52fd61a228158a204c5768e8e1cd6eb75ace983a, no merge conflicts.
Running as SYSTEM
Setting status of 52fd61a228158a204c5768e8e1cd6eb75ace983a to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/210/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 52fd61a228158a204c5768e8e1cd6eb75ace983a^{commit} # timeout=10
Checking out Revision 52fd61a228158a204c5768e8e1cd6eb75ace983a (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 52fd61a228158a204c5768e8e1cd6eb75ace983a # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk e1ea188c5d1345635ec3919236595f29354884f6 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins1115888887326359012.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py . [100%]

======================== 2 passed in 126.14s (0:02:06) =========================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins849837847608188137.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit e5dc74db44acafafb48d9097ca83fbae3104b578, no merge conflicts.
Running as SYSTEM
Setting status of e5dc74db44acafafb48d9097ca83fbae3104b578 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/212/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse e5dc74db44acafafb48d9097ca83fbae3104b578^{commit} # timeout=10
Checking out Revision e5dc74db44acafafb48d9097ca83fbae3104b578 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f e5dc74db44acafafb48d9097ca83fbae3104b578 # timeout=10
Commit message: "add changes from Julio"
 > git rev-list --no-walk 54c67635b3260bad14b1493e523c091a86cd3fba # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins7464855418943512765.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f80b7981820>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f80b7981820>, {'id': 'fc553787', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f80b6def940>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f80b7981820>
cell = {'id': 'fc553787', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-30T02:00:03.661926Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7f80b7981820>
cell = {'id': 'fc553787', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-06-30T02:00:03.661926Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '980f...e, 'engine': '980f582a-3323-4ece-bee0-9dea8cf61b8c', 'started': '2022-06-30T02:00:03.662247Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f80b7981820>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-06-30 01:58:39.747278: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-30 01:58:41.697437: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-30 01:58:41.698174: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 234 points to 32 centroids: please provide at least 1248 training points
2022-06-30 01:59:56.858919: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-30 01:59:58.818920: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-30 01:59:58.819676: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0630 02:00:03.925025 11887 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7fd9e0000000' with size 268435456
I0630 02:00:03.925748 11887 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0630 02:00:03.932891 11887 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0630 02:00:04.033126 11887 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0630 02:00:04.038017 11887 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0630 02:00:04.133489 11887 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0630 02:00:04.233676 11887 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0630 02:00:04.333906 11887 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0630 02:00:04.434171 11887 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0630 02:00:04.534452 11887 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
I0630 02:00:06.287122 11887 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0630 02:00:06.567059 11887 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0630 02:00:06.567098 11887 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0630 02:00:06.567104 11887 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0630 02:00:06.567110 11887 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0630 02:00:06.567144 11887 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0630 02:00:06.570976 11887 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0630 02:00:06.572962 11887 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-06-30 02:00:06.913972: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:06.917838: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-30 02:00:06.917863: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:06.917956: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-06-30 02:00:06.954781: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-30 02:00:06.992655: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-30 02:00:07.068204: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:07.092406: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 178453 microseconds.
I0630 02:00:07.092519 11887 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0630 02:00:07.092604 11887 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0630 02:00:09.312832 11887 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0630 02:00:09.314292 11887 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0630 02:00:11.540557 11887 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0630 02:00:11.540716 11887 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0630 02:00:13.595125 11887 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0630 02:00:13.595392 11887 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-06-30 02:00:13.596238: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:13.610662: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-06-30 02:00:13.610687: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:13.612691: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-06-30 02:00:13.633772: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-06-30 02:00:13.796148: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-06-30 02:00:13.847898: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 251669 microseconds.
I0630 02:00:13.848045 11887 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0630 02:00:13.848124 11887 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0630 02:00:15.900931 11887 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0630 02:00:15.903618 11887 model_repository_manager.cc:1191] loading: ensemble_model:1
I0630 02:00:16.004388 11887 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0630 02:00:16.004553 11887 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0630 02:00:16.004664 11887 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0630 02:00:16.004799 11887 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0630 02:00:16.073760 11887 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0630 02:00:16.074673 11887 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0630 02:00:16.075720 11887 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0630 02:00:16.076265 11887 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0630 02:00:16.117495 11887 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0630 02:00:17.096185 11887 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0630 02:00:17.096242 11887 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0630 02:00:18.096383 11887 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0630 02:00:18.096424 11887 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0630 02:00:19.117562 11887 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0630 02:00:19.117610 11887 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0630 02:00:20.230238 12144 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(121): execute

I0630 02:00:20.234754 11887 server.cc:257] Waiting for in-flight requests to complete.
I0630 02:00:20.234776 11887 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0630 02:00:20.234784 11887 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0630 02:00:20.234832 11887 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0630 02:00:20.234862 11887 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0630 02:00:20.234898 11887 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0630 02:00:20.234967 11887 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0630 02:00:20.234989 11887 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0630 02:00:20.234996 11887 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0630 02:00:20.235057 11887 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0630 02:00:20.235054 11887 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0630 02:00:20.235089 11887 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0630 02:00:20.235147 11887 server.cc:288] All models are stopped, unloading models
I0630 02:00:20.235162 11887 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0630 02:00:20.235319 11887 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0630 02:00:20.235343 11887 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0630 02:00:20.235514 11887 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0630 02:00:20.250072 11887 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0630 02:00:20.258806 11887 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0630 02:00:21.235387 11887 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0630 02:00:21.626577 11887 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0630 02:00:21.743660 11887 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0630 02:00:21.828523 11887 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0630 02:00:22.235534 11887 server.cc:295] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0630 02:00:23.235651 11887 server.cc:295] Timeout 27: Found 2 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0630 02:00:24.235777 11887 server.cc:295] Timeout 26: Found 2 live models and 0 in-flight non-inference requests
I0630 02:00:24.421943 11887 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0630 02:00:25.235914 11887 server.cc:295] Timeout 25: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:26.236033 11887 server.cc:295] Timeout 24: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:27.236151 11887 server.cc:295] Timeout 23: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:28.236267 11887 server.cc:295] Timeout 22: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:29.236391 11887 server.cc:295] Timeout 21: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:30.236511 11887 server.cc:295] Timeout 20: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:31.236670 11887 server.cc:295] Timeout 19: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:32.236781 11887 server.cc:295] Timeout 18: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:33.236892 11887 server.cc:295] Timeout 17: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:34.237009 11887 server.cc:295] Timeout 16: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:35.237128 11887 server.cc:295] Timeout 15: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:36.237242 11887 server.cc:295] Timeout 14: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:37.237354 11887 server.cc:295] Timeout 13: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:38.237468 11887 server.cc:295] Timeout 12: Found 1 live models and 0 in-flight non-inference requests
I0630 02:00:39.237580 11887 server.cc:295] Timeout 11: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0630 02:00:39.552688 11887 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0630 02:00:40.237704 11887 server.cc:295] Timeout 10: Found 0 live models and 0 in-flight non-inference requests
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 134.60s (0:02:14) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins6139464699467610757.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 071da271939cdc0956baab073333435a307ab260, no merge conflicts.
Running as SYSTEM
Setting status of 071da271939cdc0956baab073333435a307ab260 to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/222/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 071da271939cdc0956baab073333435a307ab260^{commit} # timeout=10
Checking out Revision 071da271939cdc0956baab073333435a307ab260 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 071da271939cdc0956baab073333435a307ab260 # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk 601f7828a6eb2293cff382aed4ae7e9b0183839b # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins10282615654877141105.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7ff664be25b0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7ff664be25b0>, {'id': '853937c5', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7ff66407fbc0>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7ff664be25b0>
cell = {'id': '853937c5', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-05T06:49:15.762992Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7ff664be25b0>
cell = {'id': '853937c5', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-05T06:49:15.762992Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': 'c3b4...e, 'engine': 'c3b4d25d-3e5c-4a6a-9ac7-73872e0dd9e8', 'started': '2022-07-05T06:49:15.763289Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7ff664be25b0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-07-05 06:47:52.332838: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-05 06:47:54.330318: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-05 06:47:54.331576: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 264 points to 32 centroids: please provide at least 1248 training points
2022-07-05 06:49:08.686524: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-05 06:49:10.679669: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-05 06:49:10.680377: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0705 06:49:16.029434 13332 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f7494000000' with size 268435456
I0705 06:49:16.030224 13332 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0705 06:49:16.037617 13332 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0705 06:49:16.137953 13332 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0705 06:49:16.238222 13332 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0705 06:49:16.338476 13332 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0705 06:49:16.409712 13332 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0705 06:49:16.409746 13332 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0705 06:49:16.409753 13332 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0705 06:49:16.409759 13332 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0705 06:49:16.409794 13332 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0705 06:49:16.414773 13332 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
I0705 06:49:16.438764 13332 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0705 06:49:16.539074 13332 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0705 06:49:16.639380 13332 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
2022-07-05 06:49:16.753237: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:16.757237: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-05 06:49:16.757285: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:16.757379: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-05 06:49:16.806492: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-05 06:49:16.847603: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-05 06:49:16.930865: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:16.955380: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 202159 microseconds.
I0705 06:49:16.955737 13332 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0705 06:49:16.959304 13332 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0705 06:49:16.960876 13332 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0705 06:49:19.250454 13332 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0705 06:49:19.250685 13332 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0705 06:49:21.684263 13332 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0705 06:49:21.684389 13332 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0705 06:49:23.958986 13332 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0705 06:49:23.959237 13332 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0705 06:49:26.075950 13332 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0705 06:49:26.076185 13332 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-07-05 06:49:26.077649: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:26.094762: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-05 06:49:26.094792: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:26.096792: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-05 06:49:26.117961: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-05 06:49:26.272865: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-05 06:49:26.321999: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 244363 microseconds.
I0705 06:49:26.322137 13332 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0705 06:49:26.322215 13332 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0705 06:49:28.390867 13332 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0705 06:49:28.393832 13332 model_repository_manager.cc:1191] loading: ensemble_model:1
I0705 06:49:28.494619 13332 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0705 06:49:28.494797 13332 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0705 06:49:28.494907 13332 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0705 06:49:28.495019 13332 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0705 06:49:28.559066 13332 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0705 06:49:28.559940 13332 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0705 06:49:28.560746 13332 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0705 06:49:28.561301 13332 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0705 06:49:28.602655 13332 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0705 06:49:29.580705 13332 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0705 06:49:29.580779 13332 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0705 06:49:30.580951 13332 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0705 06:49:30.581006 13332 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0705 06:49:31.610196 13332 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0705 06:49:31.610234 13332 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0705 06:49:32.290060 13593 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

I0705 06:49:32.294625 13332 server.cc:257] Waiting for in-flight requests to complete.
I0705 06:49:32.294679 13332 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0705 06:49:32.294698 13332 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0705 06:49:32.294787 13332 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0705 06:49:32.294850 13332 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0705 06:49:32.294928 13332 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0705 06:49:32.294940 13332 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0705 06:49:32.294976 13332 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0705 06:49:32.295076 13332 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0705 06:49:32.295105 13332 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0705 06:49:32.295165 13332 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0705 06:49:32.295252 13332 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0705 06:49:32.295292 13332 server.cc:288] All models are stopped, unloading models
I0705 06:49:32.295314 13332 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0705 06:49:32.295340 13332 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0705 06:49:32.295415 13332 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0705 06:49:32.295511 13332 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0705 06:49:32.303988 13332 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0705 06:49:32.320061 13332 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0705 06:49:33.295421 13332 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0705 06:49:33.679142 13332 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0705 06:49:33.700570 13332 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0705 06:49:33.802563 13332 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0705 06:49:34.295614 13332 server.cc:295] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0705 06:49:35.295749 13332 server.cc:295] Timeout 27: Found 2 live models and 0 in-flight non-inference requests
I0705 06:49:36.295878 13332 server.cc:295] Timeout 26: Found 2 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0705 06:49:37.031152 13332 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0705 06:49:37.296006 13332 server.cc:295] Timeout 25: Found 1 live models and 0 in-flight non-inference requests
I0705 06:49:38.296132 13332 server.cc:295] Timeout 24: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0705 06:49:39.296264 13332 server.cc:295] Timeout 23: Found 1 live models and 0 in-flight non-inference requests
I0705 06:49:39.465682 13332 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0705 06:49:40.296389 13332 server.cc:295] Timeout 22: Found 0 live models and 0 in-flight non-inference requests
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 121.17s (0:02:01) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins13695470398494728254.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 3f0d332dce3a80d86abc017b0283f44c985ec79a, no merge conflicts.
Running as SYSTEM
Setting status of 3f0d332dce3a80d86abc017b0283f44c985ec79a to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/238/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 3f0d332dce3a80d86abc017b0283f44c985ec79a^{commit} # timeout=10
Checking out Revision 3f0d332dce3a80d86abc017b0283f44c985ec79a (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 3f0d332dce3a80d86abc017b0283f44c985ec79a # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk 5f12a58b5dca94b7a36862c2b12e1fb2b5fcd19d # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins3331855544741952590.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.5.0, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f1995510e80>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

../../../.local/lib/python3.8/site-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f1995510e80>, {'id': '826317d2', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

../../../.local/lib/python3.8/site-packages/nbclient/util.py:84:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f199550cb40>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    # original from vaex/asyncio.py
    loop = asyncio._get_running_loop()
    if loop is None:
        had_running_loop = False
        try:
            loop = asyncio.get_event_loop()
        except RuntimeError:
            # we can still get 'There is no current event loop in ...'
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

../../../.local/lib/python3.8/site-packages/nbclient/util.py:62:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /var/jenkins_home/.local/lib...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f1995510e80>
cell = {'id': '826317d2', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-07T20:11:57.773093Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
  await self._check_raise_for_error(cell, cell_index, exec_reply)

../../../.local/lib/python3.8/site-packages/nbclient/client.py:965:


self = <testbook.client.TestbookNotebookClient object at 0x7f1995510e80>
cell = {'id': '826317d2', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-07T20:11:57.773093Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': '2663...e, 'engine': '26634424-8a53-4669-8bc7-e09c80506144', 'started': '2022-07-07T20:11:57.773387Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


../../../.local/lib/python3.8/site-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f1995510e80>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

../../../.local/lib/python3.8/site-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-07-07 20:10:21.689823: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-07 20:10:23.700432: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-07 20:10:23.701240: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 243 points to 32 centroids: please provide at least 1248 training points
2022-07-07 20:11:50.854748: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-07 20:11:52.859259: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-07 20:11:52.860028: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0707 20:11:58.051766 14459 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7ff2c4000000' with size 268435456
I0707 20:11:58.052520 14459 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0707 20:11:58.059844 14459 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0707 20:11:58.160173 14459 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0707 20:11:58.167382 14459 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0707 20:11:58.260478 14459 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0707 20:11:58.360695 14459 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0707 20:11:58.460973 14459 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0707 20:11:58.561275 14459 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0707 20:11:58.661571 14459 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
I0707 20:12:00.516936 14459 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0707 20:12:00.799154 14459 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0707 20:12:00.799192 14459 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0707 20:12:00.799201 14459 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0707 20:12:00.799207 14459 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0707 20:12:00.799242 14459 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0707 20:12:00.801774 14459 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0707 20:12:00.803814 14459 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-07-07 20:12:01.145753: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:01.149979: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-07 20:12:01.150005: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:01.150110: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-07 20:12:01.187283: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-07 20:12:01.230954: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-07 20:12:01.314418: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:01.345327: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 199593 microseconds.
I0707 20:12:01.345447 14459 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0707 20:12:01.345537 14459 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0707 20:12:03.738432 14459 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0707 20:12:03.740173 14459 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0707 20:12:06.096471 14459 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0707 20:12:06.096619 14459 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0707 20:12:08.186397 14459 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0707 20:12:08.186681 14459 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-07-07 20:12:08.188026: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:08.204280: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-07 20:12:08.204330: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:08.206735: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-07 20:12:08.231321: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-07 20:12:08.389860: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-07 20:12:08.440337: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 252324 microseconds.
I0707 20:12:08.440477 14459 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0707 20:12:08.440595 14459 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0707 20:12:10.516725 14459 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0707 20:12:10.519595 14459 model_repository_manager.cc:1191] loading: ensemble_model:1
I0707 20:12:10.620403 14459 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0707 20:12:10.620583 14459 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0707 20:12:10.620694 14459 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0707 20:12:10.620843 14459 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0707 20:12:10.683498 14459 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0707 20:12:10.684347 14459 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0707 20:12:10.685525 14459 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0707 20:12:10.686068 14459 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0707 20:12:10.727296 14459 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0707 20:12:11.708642 14459 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0707 20:12:11.708709 14459 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0707 20:12:12.708868 14459 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0707 20:12:12.708922 14459 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0707 20:12:13.727208 14459 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0707 20:12:13.727263 14459 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0707 20:12:17.337336 14717 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

I0707 20:12:17.341935 14459 server.cc:257] Waiting for in-flight requests to complete.
I0707 20:12:17.341981 14459 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0707 20:12:17.341999 14459 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0707 20:12:17.342089 14459 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0707 20:12:17.342157 14459 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0707 20:12:17.342231 14459 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0707 20:12:17.342249 14459 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0707 20:12:17.342283 14459 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0707 20:12:17.342320 14459 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0707 20:12:17.342379 14459 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0707 20:12:17.342430 14459 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0707 20:12:17.342483 14459 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0707 20:12:17.342494 14459 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0707 20:12:17.342528 14459 server.cc:288] All models are stopped, unloading models
I0707 20:12:17.342552 14459 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0707 20:12:17.342637 14459 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0707 20:12:17.342728 14459 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0707 20:12:17.351902 14459 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0707 20:12:17.364555 14459 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0707 20:12:18.343247 14459 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
I0707 20:12:18.739859 14459 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0707 20:12:18.810963 14459 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0707 20:12:18.930780 14459 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0707 20:12:19.343391 14459 server.cc:295] Timeout 28: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:20.343533 14459 server.cc:295] Timeout 27: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:21.343667 14459 server.cc:295] Timeout 26: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:22.343794 14459 server.cc:295] Timeout 25: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:23.343929 14459 server.cc:295] Timeout 24: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:24.344067 14459 server.cc:295] Timeout 23: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:25.344197 14459 server.cc:295] Timeout 22: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:26.344329 14459 server.cc:295] Timeout 21: Found 2 live models and 0 in-flight non-inference requests
I0707 20:12:27.344463 14459 server.cc:295] Timeout 20: Found 2 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0707 20:12:28.197990 14459 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0707 20:12:28.344596 14459 server.cc:295] Timeout 19: Found 1 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0707 20:12:28.872355 14459 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0707 20:12:29.344727 14459 server.cc:295] Timeout 18: Found 0 live models and 0 in-flight non-inference requests
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
=================== 1 failed, 1 passed in 141.60s (0:02:21) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins12241036242947276771.sh

@bschifferer
Copy link
Contributor

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 3f0d332dce3a80d86abc017b0283f44c985ec79a, no merge conflicts.
Running as SYSTEM
Setting status of 3f0d332dce3a80d86abc017b0283f44c985ec79a to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/249/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 3f0d332dce3a80d86abc017b0283f44c985ec79a^{commit} # timeout=10
Checking out Revision 3f0d332dce3a80d86abc017b0283f44c985ec79a (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 3f0d332dce3a80d86abc017b0283f44c985ec79a # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk b8464675229dc47220fbdaa54583df1135c81850 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins8813610631507582293.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f42ffda99a0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

/usr/local/lib/python3.8/dist-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f42ffda99a0>, {'id': '10d372c7', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

/usr/local/lib/python3.8/dist-packages/nbclient/util.py:85:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f42ffc9a2c0>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = None
    if loop is None:
        had_running_loop = False
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

/usr/local/lib/python3.8/dist-packages/nbclient/util.py:60:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /usr/local/lib/python3.8/dis...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f42ffda99a0>
cell = {'id': '10d372c7', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-11T07:04:13.591846Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
    await run_hook(
        self.on_cell_executed, cell=cell, cell_index=cell_index, execute_reply=exec_reply
    )
  await self._check_raise_for_error(cell, cell_index, exec_reply)

/usr/local/lib/python3.8/dist-packages/nbclient/client.py:1022:


self = <testbook.client.TestbookNotebookClient object at 0x7f42ffda99a0>
cell = {'id': '10d372c7', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-11T07:04:13.591846Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': 'e43c...e, 'engine': 'e43ceade-9214-435c-ab0d-83f717edbbbd', 'started': '2022-07-11T07:04:13.592127Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(
        self.on_cell_error, cell=cell, cell_index=cell_index, execute_reply=exec_reply
    )
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

/usr/local/lib/python3.8/dist-packages/nbclient/client.py:916: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


/usr/local/lib/python3.8/dist-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f42ffda99a0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

/usr/local/lib/python3.8/dist-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-07-11 07:03:13.188826: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 07:03:15.169716: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 07:03:15.170437: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 244 points to 32 centroids: please provide at least 1248 training points
2022-07-11 07:04:06.637656: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 07:04:08.614639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 07:04:08.615404: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 15153 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0711 07:04:13.863061 8249 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7fb186000000' with size 268435456
I0711 07:04:13.863799 8249 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0711 07:04:13.871099 8249 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0711 07:04:13.971406 8249 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0711 07:04:13.975962 8249 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0711 07:04:14.071689 8249 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0711 07:04:14.171891 8249 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0711 07:04:14.272305 8249 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0711 07:04:14.372639 8249 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0711 07:04:14.472963 8249 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
I0711 07:04:16.294387 8249 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0711 07:04:16.568637 8249 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0711 07:04:16.568675 8249 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0711 07:04:16.568681 8249 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0711 07:04:16.568687 8249 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0711 07:04:16.568722 8249 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0711 07:04:16.570827 8249 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0711 07:04:16.574836 8249 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
2022-07-11 07:04:16.927794: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:16.931830: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-11 07:04:16.931860: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:16.931970: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 07:04:16.979114: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 07:04:17.029689: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-11 07:04:17.109264: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:17.133343: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 205569 microseconds.
I0711 07:04:17.133471 8249 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0711 07:04:17.133563 8249 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0711 07:04:19.502466 8249 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0711 07:04:19.502594 8249 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0711 07:04:21.830465 8249 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0711 07:04:21.830786 8249 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
2022-07-11 07:04:21.831394: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:21.846467: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-11 07:04:21.846511: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:21.848728: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 12648 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 07:04:21.872764: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-11 07:04:22.029350: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 07:04:22.081260: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 249882 microseconds.
I0711 07:04:22.081407 8249 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0711 07:04:22.081485 8249 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0711 07:04:24.185729 8249 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0711 07:04:24.186051 8249 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
I0711 07:04:26.229284 8249 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0711 07:04:26.231767 8249 model_repository_manager.cc:1191] loading: ensemble_model:1
I0711 07:04:26.332527 8249 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0711 07:04:26.332700 8249 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0711 07:04:26.332833 8249 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0711 07:04:26.332951 8249 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0711 07:04:26.397393 8249 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0711 07:04:26.398436 8249 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0711 07:04:26.399425 8249 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0711 07:04:26.399990 8249 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0711 07:04:26.441190 8249 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0711 07:04:27.418998 8249 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 07:04:27.419079 8249 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0711 07:04:28.419265 8249 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 07:04:28.419325 8249 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0711 07:04:29.127724 8506 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

I0711 07:04:29.128687 8249 server.cc:257] Waiting for in-flight requests to complete.
I0711 07:04:29.128789 8249 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0711 07:04:29.128818 8249 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0711 07:04:29.128917 8249 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0711 07:04:29.128983 8249 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0711 07:04:29.129058 8249 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0711 07:04:29.129082 8249 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0711 07:04:29.129110 8249 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0711 07:04:29.129137 8249 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0711 07:04:29.129197 8249 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0711 07:04:29.129273 8249 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0711 07:04:29.129330 8249 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0711 07:04:29.129348 8249 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0711 07:04:29.129376 8249 server.cc:288] All models are stopped, unloading models
I0711 07:04:29.129399 8249 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0711 07:04:29.129470 8249 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0711 07:04:29.129578 8249 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0711 07:04:29.140738 8249 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0711 07:04:29.155348 8249 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
W0711 07:04:29.436996 8249 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 07:04:29.437049 8249 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
I0711 07:04:30.129633 8249 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0711 07:04:30.541288 8249 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0711 07:04:30.639624 8249 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0711 07:04:30.675237 8249 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0711 07:04:30.699159 8249 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0711 07:04:30.728692 8249 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0711 07:04:31.129827 8249 server.cc:295] Timeout 28: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
==================== 1 failed, 1 passed in 89.89s (0:01:29) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins17083624443550231610.sh

@@ -126,7 +126,24 @@
"outputs": [
{
"data": {
"application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 1;\n var nbb_unformatted_code = \"%load_ext nb_black\\n# for running this example on GPU, install the following libraries\\n# %pip install tensorflow \\\"feast<0.20\\\" faiss-gpu\\n\\n# for running this example on CPU, uncomment the following lines\\n# %pip install tensorflow-cpu \\\"feast<0.20\\\" faiss-cpu\\n# %pip uninstall cudf\";\n var nbb_formatted_code = \"%load_ext nb_black\\n# for running this example on GPU, install the following libraries\\n# %pip install tensorflow \\\"feast<0.20\\\" faiss-gpu\\n\\n# for running this example on CPU, uncomment the following lines\\n# %pip install tensorflow-cpu \\\"feast<0.20\\\" faiss-cpu\\n# %pip uninstall cudf\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ",
"application/javascript": [
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove this change and the tests seem to work. I would replace this code box with a text box that just tells them the command to run.

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit f6f4204bafea13467f9788db0a31ab4000a69cec, no merge conflicts.
Running as SYSTEM
Setting status of f6f4204bafea13467f9788db0a31ab4000a69cec to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/251/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse f6f4204bafea13467f9788db0a31ab4000a69cec^{commit} # timeout=10
Checking out Revision f6f4204bafea13467f9788db0a31ab4000a69cec (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f f6f4204bafea13467f9788db0a31ab4000a69cec # timeout=10
Commit message: "Merge branch 'main' into add_integration_test"
 > git rev-list --no-walk c6c42ab73191527377e55fd406003ad81c6c5a46 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins14144039519244395743.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py F [100%]

=================================== FAILURES ===================================
__________________________________ test_func ___________________________________

self = <testbook.client.TestbookNotebookClient object at 0x7f8e711536d0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
          cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)

/usr/local/lib/python3.8/dist-packages/testbook/client.py:133:


args = (<testbook.client.TestbookNotebookClient object at 0x7f8e711536d0>, {'id': '87fd6d9c', 'cell_type': 'code', 'metadata'...ast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}, 53)
kwargs = {}

def wrapped(*args, **kwargs):
  return just_run(coro(*args, **kwargs))

/usr/local/lib/python3.8/dist-packages/nbclient/util.py:85:


coro = <coroutine object NotebookClient.async_execute_cell at 0x7f8e710c2340>

def just_run(coro: Awaitable) -> Any:
    """Make the coroutine run, even if there is an event loop running (using nest_asyncio)"""
    try:
        loop = asyncio.get_running_loop()
    except RuntimeError:
        loop = None
    if loop is None:
        had_running_loop = False
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    else:
        had_running_loop = True
    if had_running_loop:
        # if there is a running loop, we patch using nest_asyncio
        # to have reentrant event loops
        check_ipython()
        import nest_asyncio

        nest_asyncio.apply()
        check_patch_tornado()
  return loop.run_until_complete(coro)

/usr/local/lib/python3.8/dist-packages/nbclient/util.py:60:


self = <_UnixSelectorEventLoop running=False closed=False debug=False>
future = <Task finished name='Task-365' coro=<NotebookClient.async_execute_cell() done, defined at /usr/local/lib/python3.8/dis...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n\n')>

def run_until_complete(self, future):
    """Run until the Future is done.

    If the argument is a coroutine, it is wrapped in a Task.

    WARNING: It would be disastrous to call run_until_complete()
    with the same coroutine twice -- it would wrap it in two
    different Tasks and that can't be good.

    Return the Future's result, or raise its exception.
    """
    self._check_closed()
    self._check_running()

    new_task = not futures.isfuture(future)
    future = tasks.ensure_future(future, loop=self)
    if new_task:
        # An exception is raised if the future didn't complete, so there
        # is no need to log the "destroy pending task" message
        future._log_destroy_pending = False

    future.add_done_callback(_run_until_complete_cb)
    try:
        self.run_forever()
    except:
        if new_task and future.done() and not future.cancelled():
            # The coroutine raised a BaseException. Consume the exception
            # to not log a warning, the caller doesn't have access to the
            # local task.
            future.exception()
        raise
    finally:
        future.remove_done_callback(_run_until_complete_cb)
    if not future.done():
        raise RuntimeError('Event loop stopped before Future completed.')
  return future.result()

/usr/lib/python3.8/asyncio/base_events.py:616:


self = <testbook.client.TestbookNotebookClient object at 0x7f8e711536d0>
cell = {'id': '87fd6d9c', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-11T15:23:30.982900Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53, execution_count = None, store_history = True

async def async_execute_cell(
    self,
    cell: NotebookNode,
    cell_index: int,
    execution_count: t.Optional[int] = None,
    store_history: bool = True,
) -> NotebookNode:
    """
    Executes a single code cell.

    To execute all cells see :meth:`execute`.

    Parameters
    ----------
    cell : nbformat.NotebookNode
        The cell which is currently being processed.
    cell_index : int
        The position of the cell within the notebook object.
    execution_count : int
        The execution count to be assigned to the cell (default: Use kernel response)
    store_history : bool
        Determines if history should be stored in the kernel (default: False).
        Specific to ipython kernels, which can store command histories.

    Returns
    -------
    output : dict
        The execution output payload (or None for no output).

    Raises
    ------
    CellExecutionError
        If execution failed and should raise an exception, this will be raised
        with defaults about the failure.

    Returns
    -------
    cell : NotebookNode
        The cell which was just processed.
    """
    assert self.kc is not None

    await run_hook(self.on_cell_start, cell=cell, cell_index=cell_index)

    if cell.cell_type != 'code' or not cell.source.strip():
        self.log.debug("Skipping non-executing cell %s", cell_index)
        return cell

    if self.skip_cells_with_tag in cell.metadata.get("tags", []):
        self.log.debug("Skipping tagged cell %s", cell_index)
        return cell

    if self.record_timing:  # clear execution metadata prior to execution
        cell['metadata']['execution'] = {}

    self.log.debug("Executing cell:\n%s", cell.source)

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])
    )

    await run_hook(self.on_cell_execute, cell=cell, cell_index=cell_index)
    parent_msg_id = await ensure_async(
        self.kc.execute(
            cell.source, store_history=store_history, stop_on_error=not cell_allows_errors
        )
    )
    await run_hook(self.on_cell_complete, cell=cell, cell_index=cell_index)
    # We launched a code cell to execute
    self.code_cells_executed += 1
    exec_timeout = self._get_timeout(cell)

    cell.outputs = []
    self.clear_before_next_output = False

    task_poll_kernel_alive = asyncio.ensure_future(self._async_poll_kernel_alive())
    task_poll_output_msg = asyncio.ensure_future(
        self._async_poll_output_msg(parent_msg_id, cell, cell_index)
    )
    self.task_poll_for_reply = asyncio.ensure_future(
        self._async_poll_for_reply(
            parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive
        )
    )
    try:
        exec_reply = await self.task_poll_for_reply
    except asyncio.CancelledError:
        # can only be cancelled by task_poll_kernel_alive when the kernel is dead
        task_poll_output_msg.cancel()
        raise DeadKernelError("Kernel died")
    except Exception as e:
        # Best effort to cancel request if it hasn't been resolved
        try:
            # Check if the task_poll_output is doing the raising for us
            if not isinstance(e, CellControlSignal):
                task_poll_output_msg.cancel()
        finally:
            raise

    if execution_count:
        cell['execution_count'] = execution_count
    await run_hook(
        self.on_cell_executed, cell=cell, cell_index=cell_index, execute_reply=exec_reply
    )
  await self._check_raise_for_error(cell, cell_index, exec_reply)

/usr/local/lib/python3.8/dist-packages/nbclient/client.py:1022:


self = <testbook.client.TestbookNotebookClient object at 0x7f8e711536d0>
cell = {'id': '87fd6d9c', 'cell_type': 'code', 'metadata': {'execution': {'iopub.status.busy': '2022-07-11T15:23:30.982900Z',...ps/feast.py, line 299 in transform>]"\n\nAt:\n /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute\n']}]}
cell_index = 53
exec_reply = {'buffers': [], 'content': {'ename': 'InferenceServerException', 'engine_info': {'engine_id': -1, 'engine_uuid': 'b4a4...e, 'engine': 'b4a47129-52d3-434b-ac1a-dab2e3a004ce', 'started': '2022-07-11T15:23:30.983183Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(
        self.on_cell_error, cell=cell, cell_index=cell_index, execute_reply=exec_reply
    )
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

/usr/local/lib/python3.8/dist-packages/nbclient/client.py:916: CellExecutionError

During handling of the above exception, another exception occurred:

def test_func():
    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "01-Building-Recommender-Systems-with-Merlin.ipynb",
        execute=False,
    ) as tb1:
        tb1.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["NUM_ROWS"] = "10000"
            os.system("mkdir -p /tmp/examples")
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        tb1.execute()
        assert os.path.isdir("/tmp/examples/dlrm")
        assert os.path.isdir("/tmp/examples/feature_repo")
        assert os.path.isdir("/tmp/examples/query_tower")
        assert os.path.isfile("/tmp/examples/item_embeddings.parquet")
        assert os.path.isfile("/tmp/examples/feature_repo/user_features.py")
        assert os.path.isfile("/tmp/examples/feature_repo/item_features.py")

    with testbook(
        REPO_ROOT
        / "examples"
        / "Building-and-deploying-multi-stage-RecSys"
        / "02-Deploying-multi-stage-RecSys-with-Merlin-Systems.ipynb",
        execute=False,
    ) as tb2:
        tb2.inject(
            """
            import os
            os.environ["DATA_FOLDER"] = "/tmp/data/"
            os.environ["BASE_DIR"] = "/tmp/examples/"
            """
        )
        NUM_OF_CELLS = len(tb2.cells)
        tb2.execute_cell(list(range(0, NUM_OF_CELLS - 3)))
        top_k = tb2.ref("top_k")
        outputs = tb2.ref("outputs")
        assert outputs[0] == "ordered_ids"
      tb2.inject(
            """
            import shutil
            from merlin.models.loader.tf_utils import configure_tensorflow
            configure_tensorflow()
            from merlin.systems.triton.utils import run_ensemble_on_tritonserver
            response = run_ensemble_on_tritonserver(
                "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
            )
            response = [x.tolist()[0] for x in response["ordered_ids"]]
            shutil.rmtree("/tmp/examples/", ignore_errors=True)
            """
        )

tests/unit/examples/test_building_deploying_multi_stage_RecSys.py:57:


/usr/local/lib/python3.8/dist-packages/testbook/client.py:237: in inject
cell = TestbookNode(self.execute_cell(inject_idx)) if run else TestbookNode(code_cell)


self = <testbook.client.TestbookNotebookClient object at 0x7f8e711536d0>
cell = [53], kwargs = {}, cell_indexes = [53], executed_cells = [], idx = 53

def execute_cell(self, cell, **kwargs) -> Union[Dict, List[Dict]]:
    """
    Executes a cell or list of cells
    """
    if isinstance(cell, slice):
        start, stop = self._cell_index(cell.start), self._cell_index(cell.stop)
        if cell.step is not None:
            raise TestbookError('testbook does not support step argument')

        cell = range(start, stop + 1)
    elif isinstance(cell, str) or isinstance(cell, int):
        cell = [cell]

    cell_indexes = cell

    if all(isinstance(x, str) for x in cell):
        cell_indexes = [self._cell_index(tag) for tag in cell]

    executed_cells = []
    for idx in cell_indexes:
        try:
            cell = super().execute_cell(self.nb['cells'][idx], idx, **kwargs)
        except CellExecutionError as ce:
          raise TestbookRuntimeError(ce.evalue, ce, self._get_error_class(ce.ename))

E testbook.exceptions.TestbookRuntimeError: An error occurred while executing the following cell:
E ------------------
E
E import shutil
E from merlin.models.loader.tf_utils import configure_tensorflow
E configure_tensorflow()
E from merlin.systems.triton.utils import run_ensemble_on_tritonserver
E response = run_ensemble_on_tritonserver(
E "/tmp/examples/poc_ensemble", outputs, request, "ensemble_model"
E )
E response = [x.tolist()[0] for x in response["ordered_ids"]]
E shutil.rmtree("/tmp/examples/", ignore_errors=True)
E
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInferenceServerException�[0m Traceback (most recent call last)
E Input �[0;32mIn [32]�[0m, in �[0;36m<cell line: 5>�[0;34m()�[0m
E �[1;32m 3�[0m configure_tensorflow()
E �[1;32m 4�[0m �[38;5;28;01mfrom�[39;00m �[38;5;21;01mmerlin�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01msystems�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mtriton�[39;00m�[38;5;21;01m.�[39;00m�[38;5;21;01mutils�[39;00m �[38;5;28;01mimport�[39;00m run_ensemble_on_tritonserver
E �[0;32m----> 5�[0m response �[38;5;241m=�[39m �[43mrun_ensemble_on_tritonserver�[49m�[43m(�[49m
E �[1;32m 6�[0m �[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m/tmp/examples/poc_ensemble�[39;49m�[38;5;124;43m"�[39;49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mensemble_model�[39;49m�[38;5;124;43m"�[39;49m
E �[1;32m 7�[0m �[43m)�[49m
E �[1;32m 8�[0m response �[38;5;241m=�[39m [x�[38;5;241m.�[39mtolist()[�[38;5;241m0�[39m] �[38;5;28;01mfor�[39;00m x �[38;5;129;01min�[39;00m response[�[38;5;124m"�[39m�[38;5;124mordered_ids�[39m�[38;5;124m"�[39m]]
E �[1;32m 9�[0m shutil�[38;5;241m.�[39mrmtree(�[38;5;124m"�[39m�[38;5;124m/tmp/examples/�[39m�[38;5;124m"�[39m, ignore_errors�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:93�[0m, in �[0;36mrun_ensemble_on_tritonserver�[0;34m(tmpdir, output_columns, df, model_name)�[0m
E �[1;32m 91�[0m response �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 92�[0m �[38;5;28;01mwith�[39;00m run_triton_server(tmpdir) �[38;5;28;01mas�[39;00m client:
E �[0;32m---> 93�[0m response �[38;5;241m=�[39m �[43msend_triton_request�[49m�[43m(�[49m�[43mdf�[49m�[43m,�[49m�[43m �[49m�[43moutput_columns�[49m�[43m,�[49m�[43m �[49m�[43mclient�[49m�[38;5;241;43m=�[39;49m�[43mclient�[49m�[43m,�[49m�[43m �[49m�[43mtriton_model�[49m�[38;5;241;43m=�[39;49m�[43mmodel_name�[49m�[43m)�[49m
E �[1;32m 95�[0m �[38;5;28;01mreturn�[39;00m response
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/merlin/systems/triton/utils.py:141�[0m, in �[0;36msend_triton_request�[0;34m(df, outputs_list, client, endpoint, request_id, triton_model)�[0m
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m [grpcclient�[38;5;241m.�[39mInferRequestedOutput(col) �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list]
E �[1;32m 140�[0m �[38;5;28;01mwith�[39;00m client:
E �[0;32m--> 141�[0m response �[38;5;241m=�[39m �[43mclient�[49m�[38;5;241;43m.�[39;49m�[43minfer�[49m�[43m(�[49m�[43mtriton_model�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mrequest_id�[49m�[38;5;241;43m=�[39;49m�[43mrequest_id�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[38;5;241;43m=�[39;49m�[43moutputs�[49m�[43m)�[49m
E �[1;32m 143�[0m results �[38;5;241m=�[39m {}
E �[1;32m 144�[0m �[38;5;28;01mfor�[39;00m col �[38;5;129;01min�[39;00m outputs_list:
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:1322�[0m, in �[0;36mInferenceServerClient.infer�[0;34m(self, model_name, inputs, model_version, outputs, request_id, sequence_id, sequence_start, sequence_end, priority, timeout, client_timeout, headers, compression_algorithm)�[0m
E �[1;32m 1320�[0m �[38;5;28;01mreturn�[39;00m result
E �[1;32m 1321�[0m �[38;5;28;01mexcept�[39;00m grpc�[38;5;241m.�[39mRpcError �[38;5;28;01mas�[39;00m rpc_error:
E �[0;32m-> 1322�[0m �[43mraise_error_grpc�[49m�[43m(�[49m�[43mrpc_error�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tritonclient/grpc/init.py:62�[0m, in �[0;36mraise_error_grpc�[0;34m(rpc_error)�[0m
E �[1;32m 61�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mraise_error_grpc�[39m(rpc_error):
E �[0;32m---> 62�[0m �[38;5;28;01mraise�[39;00m get_error_grpc(rpc_error) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E
E �[0;31mInferenceServerException�[0m: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute
E
E InferenceServerException: [StatusCode.INTERNAL] in ensemble 'ensemble_model', Failed to process the request(s) for model instance '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
E 1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)
E
E Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"
E
E At:
E /tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

/usr/local/lib/python3.8/dist-packages/testbook/client.py:135: TestbookRuntimeError
----------------------------- Captured stdout call -----------------------------
Signal (2) received.
----------------------------- Captured stderr call -----------------------------
2022-07-11 15:22:31.206434: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 15:22:33.208401: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 15:22:33.209127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
WARNING clustering 258 points to 32 centroids: please provide at least 1248 training points
2022-07-11 15:23:23.948050: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 15:23:25.938633: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 15:23:25.939393: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14532 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
I0711 15:23:31.265531 27170 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f02c4000000' with size 268435456
I0711 15:23:31.266307 27170 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I0711 15:23:31.273735 27170 model_repository_manager.cc:1191] loading: 1_predicttensorflow:1
I0711 15:23:31.373967 27170 model_repository_manager.cc:1191] loading: 0_queryfeast:1
I0711 15:23:31.474334 27170 model_repository_manager.cc:1191] loading: 2_queryfaiss:1
I0711 15:23:31.574568 27170 model_repository_manager.cc:1191] loading: 3_queryfeast:1
I0711 15:23:31.647470 27170 tensorflow.cc:2181] TRITONBACKEND_Initialize: tensorflow
I0711 15:23:31.647508 27170 tensorflow.cc:2191] Triton TRITONBACKEND API version: 1.9
I0711 15:23:31.647514 27170 tensorflow.cc:2197] 'tensorflow' TRITONBACKEND API version: 1.9
I0711 15:23:31.647520 27170 tensorflow.cc:2221] backend configuration:
{"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}}
I0711 15:23:31.647555 27170 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 1_predicttensorflow (version 1)
I0711 15:23:31.652580 27170 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 1_predicttensorflow (GPU device 0)
I0711 15:23:31.674866 27170 model_repository_manager.cc:1191] loading: 4_unrollfeatures:1
I0711 15:23:31.775198 27170 model_repository_manager.cc:1191] loading: 5_predicttensorflow:1
I0711 15:23:31.875517 27170 model_repository_manager.cc:1191] loading: 6_softmaxsampling:1
2022-07-11 15:23:32.004503: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:32.007909: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-11 15:23:32.007958: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:32.008056: I tensorflow/core/platform/cpu_feature_guard.cc:152] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-07-11 15:23:32.044983: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 15:23:32.079467: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-11 15:23:32.160611: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/1_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:32.184697: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 180212 microseconds.
I0711 15:23:32.184928 27170 model_repository_manager.cc:1345] successfully loaded '1_predicttensorflow' version 1
I0711 15:23:32.189349 27170 tensorflow.cc:2281] TRITONBACKEND_ModelInitialize: 5_predicttensorflow (version 1)
I0711 15:23:32.191330 27170 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 0_queryfeast (GPU device 0)
I0711 15:23:34.589584 27170 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 2_queryfaiss (GPU device 0)
I0711 15:23:34.589846 27170 model_repository_manager.cc:1345] successfully loaded '0_queryfeast' version 1
I0711 15:23:36.994224 27170 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 3_queryfeast (GPU device 0)
I0711 15:23:36.994374 27170 model_repository_manager.cc:1345] successfully loaded '2_queryfaiss' version 1
I0711 15:23:39.368956 27170 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 4_unrollfeatures (GPU device 0)
I0711 15:23:39.369270 27170 model_repository_manager.cc:1345] successfully loaded '3_queryfeast' version 1
I0711 15:23:41.493764 27170 tensorflow.cc:2330] TRITONBACKEND_ModelInstanceInitialize: 5_predicttensorflow (GPU device 0)
I0711 15:23:41.494028 27170 model_repository_manager.cc:1345] successfully loaded '4_unrollfeatures' version 1
2022-07-11 15:23:41.495475: I tensorflow/cc/saved_model/reader.cc:43] Reading SavedModel from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:41.514275: I tensorflow/cc/saved_model/reader.cc:78] Reading meta graph with tags { serve }
2022-07-11 15:23:41.514327: I tensorflow/cc/saved_model/reader.cc:119] Reading SavedModel debug info (if present) from: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:41.516390: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 10540 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-07-11 15:23:41.539206: I tensorflow/cc/saved_model/loader.cc:230] Restoring SavedModel bundle.
2022-07-11 15:23:41.697224: I tensorflow/cc/saved_model/loader.cc:214] Running initialization op on SavedModel bundle at path: /tmp/examples/poc_ensemble/5_predicttensorflow/1/model.savedmodel
2022-07-11 15:23:41.747391: I tensorflow/cc/saved_model/loader.cc:321] SavedModel load for tags { serve }; Status: success: OK. Took 251930 microseconds.
I0711 15:23:41.747538 27170 python.cc:2388] TRITONBACKEND_ModelInstanceInitialize: 6_softmaxsampling (GPU device 0)
I0711 15:23:41.747614 27170 model_repository_manager.cc:1345] successfully loaded '5_predicttensorflow' version 1
I0711 15:23:43.830690 27170 model_repository_manager.cc:1345] successfully loaded '6_softmaxsampling' version 1
I0711 15:23:43.833622 27170 model_repository_manager.cc:1191] loading: ensemble_model:1
I0711 15:23:43.934443 27170 model_repository_manager.cc:1345] successfully loaded 'ensemble_model' version 1
I0711 15:23:43.934630 27170 server.cc:556]
+------------------+------+
| Repository Agent | Path |
+------------------+------+
+------------------+------+

I0711 15:23:43.934747 27170 server.cc:583]
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Backend | Path | Config |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tensorflow | /opt/tritonserver/backends/tensorflow2/libtriton_tensorflow2.so | {"cmdline":{"auto-complete-config":"false","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","version":"2","default-max-batch-size":"4"}} |
| python | /opt/tritonserver/backends/python/libtriton_python.so | {"cmdline":{"auto-complete-config":"false","min-compute-capability":"6.000000","backend-directory":"/opt/tritonserver/backends","default-max-batch-size":"4"}} |
+------------+-----------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0711 15:23:43.934863 27170 server.cc:626]
+---------------------+---------+--------+
| Model | Version | Status |
+---------------------+---------+--------+
| 0_queryfeast | 1 | READY |
| 1_predicttensorflow | 1 | READY |
| 2_queryfaiss | 1 | READY |
| 3_queryfeast | 1 | READY |
| 4_unrollfeatures | 1 | READY |
| 5_predicttensorflow | 1 | READY |
| 6_softmaxsampling | 1 | READY |
| ensemble_model | 1 | READY |
+---------------------+---------+--------+

I0711 15:23:43.999283 27170 metrics.cc:650] Collecting metrics for GPU 0: Tesla P100-DGXS-16GB
I0711 15:23:44.000158 27170 tritonserver.cc:2138]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option | Value |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id | triton |
| server_version | 2.22.0 |
| server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0] | /tmp/examples/poc_ensemble |
| model_control_mode | MODE_NONE |
| strict_model_config | 1 |
| rate_limit | OFF |
| pinned_memory_pool_byte_size | 268435456 |
| cuda_memory_pool_byte_size{0} | 67108864 |
| response_cache_byte_size | 0 |
| min_supported_compute_capability | 6.0 |
| strict_readiness | 1 |
| exit_timeout | 30 |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0711 15:23:44.001002 27170 grpc_server.cc:4589] Started GRPCInferenceService at 0.0.0.0:8001
I0711 15:23:44.001233 27170 http_server.cc:3303] Started HTTPService at 0.0.0.0:8000
I0711 15:23:44.042247 27170 http_server.cc:178] Started Metrics Service at 0.0.0.0:8002
W0711 15:23:45.019924 27170 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 15:23:45.019986 27170 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0711 15:23:46.020144 27170 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 15:23:46.020196 27170 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
W0711 15:23:47.039069 27170 metrics.cc:468] Unable to get energy consumption for GPU 0. Status:Success, value:0
W0711 15:23:47.039126 27170 metrics.cc:507] Unable to get memory usage for GPU 0. Memory usage status:Success, value:0. Memory total status:Success, value:0
0711 15:23:48.524572 27539 pb_stub.cc:749] Failed to process the request(s) for model '3_queryfeast', message: TypeError: init(): incompatible constructor arguments. The following argument types are supported:
1. c_python_backend_utils.InferenceResponse(output_tensors: List[c_python_backend_utils.Tensor], error: c_python_backend_utils.TritonError = None)

Invoked with: kwargs: tensors=[], error="<class 'TypeError'>, int() argument must be a string, a bytes-like object or a number, not 'NoneType', [<FrameSummary file /tmp/examples/poc_ensemble/3_queryfeast/1/model.py, line 105 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/op_runner.py, line 38 in execute>, <FrameSummary file /usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py, line 299 in transform>]"

At:
/tmp/examples/poc_ensemble/3_queryfeast/1/model.py(122): execute

I0711 15:23:48.528941 27170 server.cc:257] Waiting for in-flight requests to complete.
I0711 15:23:48.528991 27170 server.cc:273] Timeout 30: Found 0 model versions that have in-flight inferences
I0711 15:23:48.529010 27170 model_repository_manager.cc:1223] unloading: ensemble_model:1
I0711 15:23:48.529105 27170 model_repository_manager.cc:1223] unloading: 6_softmaxsampling:1
I0711 15:23:48.529182 27170 model_repository_manager.cc:1223] unloading: 5_predicttensorflow:1
I0711 15:23:48.529290 27170 model_repository_manager.cc:1328] successfully unloaded 'ensemble_model' version 1
I0711 15:23:48.529297 27170 model_repository_manager.cc:1223] unloading: 4_unrollfeatures:1
I0711 15:23:48.529399 27170 model_repository_manager.cc:1223] unloading: 3_queryfeast:1
I0711 15:23:48.529416 27170 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0711 15:23:48.529452 27170 model_repository_manager.cc:1223] unloading: 2_queryfaiss:1
I0711 15:23:48.529523 27170 model_repository_manager.cc:1223] unloading: 1_predicttensorflow:1
I0711 15:23:48.529598 27170 model_repository_manager.cc:1223] unloading: 0_queryfeast:1
I0711 15:23:48.529642 27170 server.cc:288] All models are stopped, unloading models
I0711 15:23:48.529665 27170 server.cc:295] Timeout 30: Found 7 live models and 0 in-flight non-inference requests
I0711 15:23:48.529700 27170 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0711 15:23:48.529760 27170 tensorflow.cc:2368] TRITONBACKEND_ModelInstanceFinalize: delete instance state
I0711 15:23:48.529896 27170 tensorflow.cc:2307] TRITONBACKEND_ModelFinalize: delete model state
I0711 15:23:48.540134 27170 model_repository_manager.cc:1328] successfully unloaded '1_predicttensorflow' version 1
I0711 15:23:48.550825 27170 model_repository_manager.cc:1328] successfully unloaded '5_predicttensorflow' version 1
I0711 15:23:49.529819 27170 server.cc:295] Timeout 29: Found 5 live models and 0 in-flight non-inference requests
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
/usr/local/lib/python3.8/dist-packages/merlin/systems/dag/ops/feast.py:15: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
ValueType.FLOAT: (np.float, False, False),
I0711 15:23:49.937626 27170 model_repository_manager.cc:1328] successfully unloaded '3_queryfeast' version 1
I0711 15:23:50.000300 27170 model_repository_manager.cc:1328] successfully unloaded '6_softmaxsampling' version 1
I0711 15:23:50.035792 27170 model_repository_manager.cc:1328] successfully unloaded '4_unrollfeatures' version 1
I0711 15:23:50.099151 27170 model_repository_manager.cc:1328] successfully unloaded '0_queryfeast' version 1
I0711 15:23:50.128331 27170 model_repository_manager.cc:1328] successfully unloaded '2_queryfaiss' version 1
I0711 15:23:50.529976 27170 server.cc:295] Timeout 28: Found 0 live models and 0 in-flight non-inference requests
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=========================== short test summary info ============================
FAILED tests/unit/examples/test_building_deploying_multi_stage_RecSys.py::test_func
==================== 1 failed, 1 passed in 91.40s (0:01:31) ====================
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins4044376313133549326.sh

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #310 of commit 1b54899459f3a4ec98239777930a8964df8a472b, no merge conflicts.
Running as SYSTEM
Setting status of 1b54899459f3a4ec98239777930a8964df8a472b to PENDING with url https://10.20.13.93:8080/job/merlin_merlin/253/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_merlin
using credential systems-login
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/Merlin # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/Merlin
 > git --version # timeout=10
using GIT_ASKPASS to set credentials login for merlin-systems
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/Merlin +refs/pull/310/*:refs/remotes/origin/pr/310/* # timeout=10
 > git rev-parse 1b54899459f3a4ec98239777930a8964df8a472b^{commit} # timeout=10
Checking out Revision 1b54899459f3a4ec98239777930a8964df8a472b (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 1b54899459f3a4ec98239777930a8964df8a472b # timeout=10
Commit message: "update notebook"
 > git rev-list --no-walk fb08a65085f475183c2e285849e8a2f35412eec9 # timeout=10
[merlin_merlin] $ /bin/bash /tmp/jenkins13362131540554656512.sh
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.2, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_merlin/merlin
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-3.0.0
collected 2 items

tests/unit/test_version.py . [ 50%]
tests/unit/examples/test_building_deploying_multi_stage_RecSys.py . [100%]

========================= 2 passed in 90.12s (0:01:30) =========================
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/Merlin/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_merlin] $ /bin/bash /tmp/jenkins14543607805977520141.sh

@jperez999 jperez999 merged commit a3a5330 into NVIDIA-Merlin:main Jul 12, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ci examples Adding new examples
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Add Merlin example notebooks as integration tests with real data
6 participants