-
Notifications
You must be signed in to change notification settings - Fork 622
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Krzysztof Lecki <klecki@nvidia.com> Extend with accuracy threshold Signed-off-by: Krzysztof Lecki <klecki@nvidia.com>
- Loading branch information
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
#!/bin/bash -e | ||
|
||
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
set -o nounset | ||
set -o errexit | ||
set -o pipefail | ||
|
||
function CLEAN_AND_EXIT { | ||
exit $1 | ||
} | ||
|
||
cd /opt/dali/docs/examples/use_cases/pytorch/efficientnet | ||
|
||
NUM_GPUS=$(nvidia-smi -L | wc -l) | ||
|
||
if [ $NUM_GPUS -ne 8 ]; | ||
then | ||
echo "This test requires DGX-1V with 8 GPUs to run correctly" | ||
exit 1 | ||
fi | ||
|
||
# Setup /imagenet/{train,val} | ||
|
||
mkdir -p /imagenet | ||
pushd /imagenet | ||
|
||
if [ ! -d "val" ]; then | ||
ln -sf /data/imagenet/val-jpeg/ val | ||
fi | ||
if [ ! -d "train" ]; then | ||
ln -sf /data/imagenet/train-jpeg/ train | ||
fi | ||
|
||
popd | ||
|
||
export PATH_TO_IMAGENET=/imagenet | ||
|
||
export RESULT_WORKSPACE=./ | ||
|
||
# synthetic benchmark | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 1 --prof 100 --no-checkpoints --training-only --data-backend synthetic --workspace $RESULT_WORKSPACE --raport-file bench_report_synthetic.json $PATH_TO_IMAGENET | ||
|
||
# DALI without automatic augmentations | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation disabled --workspace $RESULT_WORKSPACE --raport-file bench_report_dali.json $PATH_TO_IMAGENET | ||
|
||
# DALI with AutoAugment | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation autoaugment --workspace $RESULT_WORKSPACE --raport-file bench_report_dali_aa.json $PATH_TO_IMAGENET | ||
|
||
# DALI with TrivialAugment | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend dali --automatic-augmentation trivialaugment --workspace $RESULT_WORKSPACE --raport-file bench_report_dali_ta.json $PATH_TO_IMAGENET | ||
|
||
# PyTorch without automatic augmentations | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend pytorch --automatic-augmentation disabled --workspace $RESULT_WORKSPACE --raport-file bench_report_pytorch.json $PATH_TO_IMAGENET | ||
|
||
# PyTorch with AutoAugment: | ||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 4 --no-checkpoints --training-only --data-backend pytorch --automatic-augmentation autoaugment --workspace $RESULT_WORKSPACE --raport-file bench_report_pytorch_aa.json $PATH_TO_IMAGENET | ||
|
||
|
||
# The line below finds the lines with `train.total_ips`, takes the last one (with the result we | ||
# want) cuts the DLLL (this is highly useful for JSON parsing) from the JSON logs, and parses it | ||
# as JSON using Python. We can now parse the value or straight evaluate the thresholds. | ||
# grep "train.total_ips" <filename>.json | tail -1 | cut -c 5- | python3 -c "import sys, json; print(json.load(sys.stdin))" | ||
|
||
# Actual results are about 500 samples/s more | ||
SYNTH_THRESHOLD=10800 | ||
DALI_NONE_THRESHOLD=6000 # TODO(klecki): Don't know the result here | ||
DALI_AA_THRESHOLD=9000 | ||
DALI_TA_THRESHOLD=9000 # TODO(klecki): Tune to the current number of workers | ||
PYTORCH_NONE_THRESHOLD=7200 # TODO(klecki): Don't know the result here | ||
PYTORCH_AA_THRESHOLD=7200 | ||
|
||
function CHECK_PERF_THRESHOLD { | ||
FILENAME=$1 | ||
THRESHOLD=$2 | ||
grep "train.total_ips" $FILENAME | tail -1 | cut -c 5- | python3 -c "import sys, json | ||
total_ips = json.load(sys.stdin)[\"data\"][\"train.total_ips\"] | ||
if total_ips < $THRESHOLD: | ||
print(f\"[FAIL] $FILENAME below threshold: {total_ips} < $THRESHOLD\") | ||
sys.exit(1) | ||
else: | ||
print(f\"[PASS] $FILENAME above threshold: {total_ips} >= $THRESHOLD\") | ||
sys.exit(0)" | ||
} | ||
|
||
|
||
CHECK_PERF_THRESHOLD "bench_report_synthetic.json" $SYNTH_THRESHOLD | ||
CHECK_PERF_THRESHOLD "bench_report_dali.json" $DALI_NONE_THRESHOLD | ||
CHECK_PERF_THRESHOLD "bench_report_dali_aa.json" $DALI_AA_THRESHOLD | ||
CHECK_PERF_THRESHOLD "bench_report_dali_ta.json" $DALI_TA_THRESHOLD | ||
CHECK_PERF_THRESHOLD "bench_report_pytorch.json" $PYTORCH_NONE_THRESHOLD | ||
CHECK_PERF_THRESHOLD "bench_report_pytorch_aa.json" $PYTORCH_AA_THRESHOLD | ||
|
||
|
||
# In the initial training we get siginificant increase in accuracy on the first few epochs, | ||
# after 10 epochs we typically cross 50%. | ||
# Do an additional run of DALI + AA for 10 epochs and check against 48 top1 accuracy (with some | ||
# safety margin). | ||
|
||
python multiproc.py --nproc_per_node 8 ./main.py --amp --static-loss-scale 128 --batch-size 128 --epochs 10 --no-checkpoints --data-backend dali --automatic-augmentation autoaugment --workspace $RESULT_WORKSPACE --raport-file accuracy_report_dali_aa.json $PATH_TO_IMAGENET | ||
|
||
|
||
function CHECK_ACCURACY_THRESHOLD { | ||
FILENAME=$1 | ||
THRESHOLD=$2 | ||
grep "val.top1" $FILENAME | tail -1 | cut -c 5- | python3 -c "import sys, json | ||
accuracy = json.load(sys.stdin)[\"data\"][\"val.top1\"] | ||
if accuracy < $THRESHOLD: | ||
print(f\"[FAIL] $FILENAME below threshold: {accuracy} < $THRESHOLD\") | ||
sys.exit(1) | ||
else: | ||
print(f\"[PASS] $FILENAME above threshold: {accuracy} >= $THRESHOLD\") | ||
sys.exit(0)" | ||
} | ||
|
||
CHECK_ACCURACY_THRESHOLD "accuracy_report_dali_aa.json" 48 |