Skip to content

Commit

Permalink
Fixes for MoE parameter passing & use of AutoTokenizer/Model for mist…
Browse files Browse the repository at this point in the history
…ral. (#8272)

Signed-off-by: Alexandros Koumparoulis <akoumparouli@nvidia.com>
  • Loading branch information
akoumpa committed Feb 12, 2024
1 parent 6865c39 commit cce425d
Show file tree
Hide file tree
Showing 4 changed files with 19 additions and 21 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -1696,7 +1696,7 @@ def build_transformer_config(self) -> TransformerConfig:
'fp8': fp8,
'tp_comm_overlap': ub_tp_comm_overlap,
# MoE related
'num_experts': self.cfg.get('num_experts', None),
'num_moe_experts': self.cfg.get('num_moe_experts', None),
'moe_router_load_balancing_type': self.cfg.get('moe_router_load_balancing_type', 'aux_loss'),
'moe_router_topk': self.cfg.get('moe_router_topk', 2),
'moe_grouped_gemm': self.cfg.get('moe_grouped_gemm', False),
Expand All @@ -1707,11 +1707,11 @@ def build_transformer_config(self) -> TransformerConfig:
'moe_input_jitter_eps': self.cfg.get('moe_input_jitter_eps', None),
'moe_token_dropping': self.cfg.get('moe_token_dropping', False), # TODO: Support token dropping.
}
if model_specific_configs['num_experts'] is not None:
if model_specific_configs['num_moe_experts'] is not None:
assert mcore_supports_moe(), 'Megatron-core >= v0.5.0 is required for MoE'
elif not mcore_supports_moe():
if 'num_experts' in model_specific_configs:
del model_specific_configs['num_experts']
if 'num_moe_experts' in model_specific_configs:
del model_specific_configs['num_moe_experts']
moe_keys = list(filter(lambda x: x.startswith('moe_'), model_specific_configs.keys()))
for k in moe_keys:
del model_specific_configs[k]
Expand Down
22 changes: 8 additions & 14 deletions scripts/nlp_language_modeling/convert_hf_mistral_7b_to_nemo.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
from omegaconf import OmegaConf
from pytorch_lightning.core.saving import _load_state as ptl_load_state
from pytorch_lightning.trainer.trainer import Trainer
from sentencepiece import SentencePieceProcessor
from transformers import AutoModelForCausalLM, AutoTokenizer

from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.parts.nlp_overrides import (
Expand Down Expand Up @@ -127,23 +127,17 @@ def load_config(mistral_config, tokenizer_path):
return nemo_config


def load_mistral_ckpt(dir):
params_file = os.path.join(dir, 'config.json')
def load_mistral_ckpt(in_dir):
params_file = os.path.join(in_dir, 'config.json')
assert os.path.exists(params_file)
with open(params_file, 'r') as fp:
model_args = json.load(fp)

ckpt = OrderedDict()
ckpt['state_dict'] = OrderedDict()
for i in range(2):
ckpt_file = f'pytorch_model-0000{i+1}-of-00002.bin'
ckpt_path = os.path.join(dir, ckpt_file)
assert os.path.exists(ckpt_path)
ckpt.update(torch.load(ckpt_path))
tokenizer_file = os.path.join(dir, 'tokenizer.model')
assert os.path.exists(tokenizer_file)
tokenizer = SentencePieceProcessor(model_file=tokenizer_file)
assert tokenizer.get_piece_size() == model_args['vocab_size']
model = AutoModelForCausalLM.from_pretrained(in_dir)
ckpt = model.state_dict()

tokenizer = AutoTokenizer.from_pretrained(in_dir)
assert tokenizer.vocab_size == model_args['vocab_size']
return model_args, ckpt, tokenizer


Expand Down
9 changes: 6 additions & 3 deletions scripts/nlp_language_modeling/convert_hf_mixtral_to_nemo.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,9 @@ def load_model(cls, checkpoint, strict, **kwargs):

# register the artifacts
cfg = checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY]
assert os.path.exists(
cfg.tokenizer.model
), f"Expected cfg.tokenizer.model {cfg.tokenizer.model} to be present"
if cfg.tokenizer.model is not None:
model.register_artifact("tokenizer.tokenizer_model", cfg.tokenizer.model)
if cfg.tokenizer.vocab_file is not None:
Expand Down Expand Up @@ -110,8 +113,8 @@ def load_config(mixtral_config, tokenizer_path):
if 'num_key_value_heads' in mixtral_config:
nemo_config.num_query_groups = mixtral_config['num_key_value_heads']

nemo_config.num_experts = int(mixtral_config['num_local_experts'])
assert nemo_config.num_experts > 0, "num_experts must be greater than zero."
nemo_config.num_moe_experts = int(mixtral_config['num_local_experts'])
assert nemo_config.num_moe_experts > 0, "num_experts must be greater than zero."
nemo_config.moe_router_topk = int(mixtral_config['num_experts_per_tok'])
assert nemo_config.moe_router_topk > 0, "moe_router_topk must be greater than zero."
nemo_config.use_cpu_initialization = True
Expand Down Expand Up @@ -266,7 +269,7 @@ def convert(args):
raise Exception("not implemented")
checkpoint['state_dict'][moe_gate_name] = param_to_weights(moe_gate)
# Handle experts
for i in range(nemo_config.num_experts):
for i in range(nemo_config.num_moe_experts):
gate_proj = ckpt[f'model.layers.{l}.block_sparse_moe.experts.{i}.w1.weight']
up_proj = ckpt[f'model.layers.{l}.block_sparse_moe.experts.{i}.w3.weight']
if mcore_gpt:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,7 @@ def get_new_key(old_key):
convert_dict = convert_state_dict(state_dict_hf, amp=omega_cfg.megatron_amp_O2)

logging.info("Creating Megatron model...")
omega_cfg.cpu_offloading_num_layers = 0
model = load_state_dict_helper(MegatronGPTModel, omega_cfg, trainer, convert_dict)
logging.info(f"Created model:\n{model}")

Expand Down

0 comments on commit cce425d

Please sign in to comment.