-
Notifications
You must be signed in to change notification settings - Fork 2.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Mistral 7b conversion script #8052
Merged
ericharper
merged 8 commits into
NVIDIA:main
from
akoumpa:mistral_7b_support/akoumparouli
Jan 25, 2024
Merged
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
531975b
Import script for mistral-7b.
akoumpa 15ab972
add window_size to nemo_config.
akoumpa 1f43ece
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 0c72777
Switch from Mistral checkpoint to HF-Mistral.
akoumpa f9d9641
Force lowercase when checking for normalization type.
akoumpa 763fbb2
NeMo-Mistral-7B to HF-Mistral-7B.
akoumpa 035a228
Merge branch 'main' into mistral_7b_support/akoumparouli
ericharper 81372b0
Merge branch 'main' into mistral_7b_support/akoumparouli
ericharper File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
341 changes: 341 additions & 0 deletions
341
scripts/nlp_language_modeling/convert_hf_mistral_7b_to_nemo.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r""" | ||
Conversion script to convert HuggingFace Mistral-7B checkpoints into nemo checkpoint. | ||
Example to run this conversion script: | ||
python convert_hf_mistral_7b_to_nemo.py \ | ||
--in-file <path_to_mistral_checkpoints_folder> \ | ||
--out-file <path_to_output_nemo_file> \ | ||
[--fast-swiglu\ | ||
""" | ||
|
||
|
||
import json | ||
import os | ||
from argparse import ArgumentParser | ||
from collections import OrderedDict | ||
|
||
import torch | ||
import torch.nn | ||
from omegaconf import OmegaConf | ||
from pytorch_lightning.core.saving import _load_state as ptl_load_state | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
from sentencepiece import SentencePieceProcessor | ||
|
||
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel | ||
from nemo.collections.nlp.parts.nlp_overrides import ( | ||
GradScaler, | ||
MegatronHalfPrecisionPlugin, | ||
NLPDDPStrategy, | ||
NLPSaveRestoreConnector, | ||
PipelineMixedPrecisionPlugin, | ||
) | ||
from nemo.utils import logging | ||
|
||
|
||
def get_args(): | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
"--in-file", type=str, default=None, required=True, help="Path to Huggingface Mistral-7b checkpoints", | ||
) | ||
parser.add_argument("--out-file", type=str, default=None, required=True, help="Path to output .nemo file.") | ||
parser.add_argument("--precision", type=str, default="32", help="Model precision") | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def load_model(cls, checkpoint, strict, **kwargs): | ||
try: | ||
if 'cfg' in kwargs: | ||
model = ptl_load_state(cls, checkpoint, strict=strict, **kwargs) | ||
else: | ||
model = cls(cfg=checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY], **kwargs) | ||
for name, module in model.named_parameters(): | ||
if name in checkpoint['state_dict']: | ||
module.data = checkpoint['state_dict'][name] | ||
checkpoint['state_dict'].pop(name) | ||
else: | ||
print(f"Unexpected key: {name} not in checkpoint but in model.") | ||
|
||
for name, buffer in model.named_buffers(): | ||
if name in checkpoint['state_dict']: | ||
buffer.data = checkpoint['state_dict'][name] | ||
checkpoint['state_dict'].pop(name) | ||
|
||
if len(checkpoint['state_dict'].keys()) != 0: | ||
raise RuntimeError( | ||
f"Additional keys: {checkpoint['state_dict'].keys()} in checkpoint but not in model." | ||
) | ||
|
||
# register the artifacts | ||
cfg = checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] | ||
if cfg.tokenizer.model is not None: | ||
model.register_artifact("tokenizer.tokenizer_model", cfg.tokenizer.model) | ||
if cfg.tokenizer.vocab_file is not None: | ||
model.register_artifact("tokenizer.vocab_file", cfg.tokenizer.vocab_file) | ||
if cfg.tokenizer.merge_file is not None: | ||
model.register_artifact("tokenizer.merge_file", cfg.tokenizer.merge_file) | ||
finally: | ||
cls._set_model_restore_state(is_being_restored=False) | ||
return model | ||
|
||
|
||
def load_config(mistral_config, tokenizer_path): | ||
nemo_config = OmegaConf.load( | ||
os.path.join(os.path.dirname(__file__), '../../examples/nlp/language_modeling/conf/megatron_llama_config.yaml') | ||
).model | ||
# akoumparouli: verify this. | ||
nemo_config.encoder_seq_length = mistral_config['sliding_window'] | ||
nemo_config.num_layers = int(mistral_config['num_hidden_layers']) | ||
nemo_config.hidden_size = mistral_config['hidden_size'] | ||
nemo_config.ffn_hidden_size = mistral_config['intermediate_size'] | ||
nemo_config.num_attention_heads = mistral_config['num_attention_heads'] | ||
nemo_config.max_position_embeddings = mistral_config['max_position_embeddings'] | ||
nemo_config.window_size = [mistral_config['sliding_window'], 0] | ||
nemo_config.init_method_std = mistral_config['initializer_range'] | ||
# RMSNorm's epsilon. | ||
nemo_config.layernorm_epsilon = mistral_config['rms_norm_eps'] | ||
nemo_config.normalization = 'rmsnorm' | ||
|
||
if 'num_key_value_heads' in mistral_config: | ||
nemo_config.num_query_groups = mistral_config['num_key_value_heads'] | ||
nemo_config.use_cpu_initialization = True | ||
# Mistral uses SiLU, but it is the same as swish with beta = 1. | ||
nemo_config.activation = 'fast-swiglu' | ||
|
||
nemo_config.tokenizer.model = tokenizer_path | ||
# TODO(@akoumparouli): rope_scaling. | ||
nemo_config['rotary_base'] = mistral_config['rope_theta'] | ||
|
||
base = 128 | ||
while mistral_config['vocab_size'] % base != 0: | ||
base //= 2 | ||
nemo_config.make_vocab_size_divisible_by = base | ||
|
||
return nemo_config | ||
|
||
|
||
def load_mistral_ckpt(dir): | ||
params_file = os.path.join(dir, 'config.json') | ||
assert os.path.exists(params_file) | ||
with open(params_file, 'r') as fp: | ||
model_args = json.load(fp) | ||
|
||
ckpt = OrderedDict() | ||
ckpt['state_dict'] = OrderedDict() | ||
for i in range(2): | ||
ckpt_file = f'pytorch_model-0000{i+1}-of-00002.bin' | ||
ckpt_path = os.path.join(dir, ckpt_file) | ||
assert os.path.exists(ckpt_path) | ||
ckpt.update(torch.load(ckpt_path)) | ||
tokenizer_file = os.path.join(dir, 'tokenizer.model') | ||
assert os.path.exists(tokenizer_file) | ||
tokenizer = SentencePieceProcessor(model_file=tokenizer_file) | ||
assert tokenizer.get_piece_size() == model_args['vocab_size'] | ||
return model_args, ckpt, tokenizer | ||
|
||
|
||
def convert(args): | ||
logging.info(f"loading checkpoint {args.in_file}") | ||
|
||
model_args, ckpt, tokenizer = load_mistral_ckpt(args.in_file) | ||
nemo_config = load_config(model_args, os.path.join(args.in_file, 'tokenizer.model')) | ||
logging.info(f"loaded checkpoint {args.in_file}") | ||
|
||
if args.precision in ["32", "16"]: | ||
precision = int(float(args.precision)) | ||
elif args.precision in ["bf16", "bf16-mixed"]: | ||
if torch.cuda.is_available() and torch.cuda.is_bf16_supported(): | ||
precision = args.precision | ||
else: | ||
logging.warning("BF16 is not supported on this device. Using FP16 instead.") | ||
precision = args.precision[2:] # prune bf in string | ||
else: | ||
precision = args.precision | ||
|
||
plugins = [] | ||
if precision in [16, '16', 'bf16', '16-mixed', 'bf16-mixed']: | ||
scaler = None | ||
if precision in [16, '16', '16-mixed']: | ||
scaler = GradScaler( | ||
init_scale=nemo_config.get('native_amp_init_scale', 2 ** 32), | ||
growth_interval=nemo_config.get('native_amp_growth_interval', 1000), | ||
hysteresis=nemo_config.get('hysteresis', 2), | ||
) | ||
# MixedPrecisionPlugin in PTL >= 2.0 requires precision to be 16-mixed or bf16-mixed | ||
plugin_precision = '16-mixed' | ||
else: | ||
plugin_precision = 'bf16-mixed' | ||
|
||
if nemo_config.get('megatron_amp_O2', False): | ||
plugins.append(MegatronHalfPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) | ||
else: | ||
plugins.append(PipelineMixedPrecisionPlugin(precision=plugin_precision, device='cuda', scaler=scaler)) | ||
|
||
if precision == 32: | ||
dtype = torch.float32 | ||
elif precision in [16, "16", "16-mixed"]: | ||
dtype = torch.float16 | ||
elif precision in ["bf16", "bf16-mixed"]: | ||
dtype = torch.bfloat16 | ||
else: | ||
dtype = torch.float32 # fallback | ||
|
||
nemo_config.precision = precision | ||
logging.info(f"nemo_config: {nemo_config}") | ||
|
||
trainer = Trainer(plugins=plugins, accelerator='cpu', precision=precision, strategy=NLPDDPStrategy()) | ||
|
||
hidden_size = nemo_config.hidden_size | ||
head_num = nemo_config.num_attention_heads | ||
head_size = hidden_size // head_num | ||
num_layers = nemo_config.num_layers | ||
|
||
mcore_gpt = nemo_config.mcore_gpt | ||
|
||
assert mcore_gpt == nemo_config.get( | ||
'transformer_engine', False | ||
), "mcore_gpt transformer_engine must be enabled (or disabled) together." | ||
|
||
param_to_weights = lambda param: param.float() | ||
|
||
checkpoint = OrderedDict() | ||
checkpoint['state_dict'] = OrderedDict() | ||
|
||
embed_weight = ckpt[f'model.embed_tokens.weight'] | ||
if mcore_gpt: | ||
embed_weights_base_name = f'model.embedding.word_embeddings.weight' | ||
else: | ||
embed_weights_base_name = f'model.language_model.embedding.word_embeddings.weight' | ||
checkpoint['state_dict'][embed_weights_base_name] = param_to_weights(embed_weight) | ||
|
||
if nemo_config.num_query_groups is None or nemo_config.num_query_groups == head_num: | ||
num_query_groups = head_num | ||
else: | ||
num_query_groups = nemo_config.num_query_groups | ||
assert head_num % num_query_groups == 0, 'head_num must be divisible by num_query_groups' | ||
if mcore_gpt: | ||
assert nemo_config.activation.startswith('fast-'), 'mcore only supports fast version of gated linear unit.' | ||
|
||
for l in range(int(num_layers)): | ||
print(f"converting layer {l}") | ||
old_tensor_shape = ckpt[f'model.layers.{l}.self_attn.q_proj.weight'].size() | ||
new_q_tensor_shape = (head_num, head_size) + old_tensor_shape[1:] | ||
new_kv_tensor_shape = (num_query_groups, head_size) + old_tensor_shape[1:] | ||
|
||
q = ckpt[f'model.layers.{l}.self_attn.q_proj.weight'].view(*new_q_tensor_shape) | ||
k = ckpt[f'model.layers.{l}.self_attn.k_proj.weight'].view(*new_kv_tensor_shape) | ||
v = ckpt[f'model.layers.{l}.self_attn.v_proj.weight'].view(*new_kv_tensor_shape) | ||
|
||
# Note: we assume wq & wk have been appropriately transposed to work with | ||
# NeMo/Megatron's rotary embedding. The reference checkpoint/implementation | ||
# will not work OotB without transposing wq/wk matrices. | ||
heads_per_group = head_num // num_query_groups | ||
qkv_weights_l = [] | ||
for i in range(num_query_groups): | ||
qkv_weights_l.append(q[i * heads_per_group : (i + 1) * heads_per_group, :, :]) | ||
qkv_weights_l.append(k[i : i + 1, :, :]) | ||
qkv_weights_l.append(v[i : i + 1, :, :]) | ||
qkv_weights = torch.cat(qkv_weights_l) | ||
assert qkv_weights.ndim == 3, qkv_weights.shape | ||
assert qkv_weights.shape[0] == (heads_per_group + 2) * num_query_groups, qkv_weights.shape | ||
assert qkv_weights.shape[1] == head_size, qkv_weights.shape | ||
assert qkv_weights.shape[2] == old_tensor_shape[1], qkv_weights.shape | ||
qkv_weights = qkv_weights.reshape([head_size * (head_num + 2 * num_query_groups), hidden_size]) | ||
if mcore_gpt: | ||
qkv_weights_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.weight' | ||
else: | ||
qkv_weights_base_name = f'model.language_model.encoder.layers.{l}.self_attention.query_key_value.weight' | ||
checkpoint['state_dict'][qkv_weights_base_name] = param_to_weights(qkv_weights) | ||
|
||
# attention dense | ||
o_weight = ckpt[f'model.layers.{l}.self_attn.o_proj.weight'] | ||
if mcore_gpt: | ||
o_weight_base_name = f'model.decoder.layers.{l}.self_attention.linear_proj.weight' | ||
else: | ||
o_weight_base_name = f'model.language_model.encoder.layers.{l}.self_attention.dense.weight' | ||
checkpoint['state_dict'][o_weight_base_name] = param_to_weights(o_weight) | ||
|
||
# MLP | ||
mlp_down_weight = ckpt[f'model.layers.{l}.mlp.gate_proj.weight'] | ||
mlp_gate_weight = ckpt[f'model.layers.{l}.mlp.up_proj.weight'] | ||
if mcore_gpt: | ||
mlp_down_base_name = f'model.decoder.layers.{l}.mlp.linear_fc1.weight' | ||
else: | ||
mlp_down_base_name = f'model.language_model.encoder.layers.{l}.mlp.dense_h_to_4h.weight' | ||
mlp_down_weight = torch.cat((mlp_down_weight, mlp_gate_weight), axis=0) | ||
checkpoint['state_dict'][mlp_down_base_name] = param_to_weights(mlp_down_weight) | ||
|
||
mlp_up_weight = ckpt[f'model.layers.{l}.mlp.down_proj.weight'] | ||
if mcore_gpt: | ||
mlp_up_base_name = f'model.decoder.layers.{l}.mlp.linear_fc2.weight' | ||
else: | ||
mlp_up_base_name = f'model.language_model.encoder.layers.{l}.mlp.dense_4h_to_h.weight' | ||
checkpoint['state_dict'][mlp_up_base_name] = param_to_weights(mlp_up_weight) | ||
|
||
# LayerNorm | ||
input_ln_weight = ckpt[f'model.layers.{l}.input_layernorm.weight'] | ||
if mcore_gpt: | ||
input_ln_base_name = f'model.decoder.layers.{l}.self_attention.linear_qkv.layer_norm_weight' | ||
else: | ||
input_ln_base_name = f'model.language_model.encoder.layers.{l}.input_layernorm.weight' | ||
checkpoint['state_dict'][input_ln_base_name] = param_to_weights(input_ln_weight) | ||
|
||
post_attn_ln_weight = ckpt[f'model.layers.{l}.post_attention_layernorm.weight'] | ||
if mcore_gpt: | ||
post_attn_ln_base_name = f'model.decoder.layers.{l}.mlp.linear_fc1.layer_norm_weight' | ||
else: | ||
post_attn_ln_base_name = f'model.language_model.encoder.layers.{l}.post_attention_layernorm.weight' | ||
checkpoint['state_dict'][post_attn_ln_base_name] = param_to_weights(post_attn_ln_weight) | ||
|
||
print(f"done layer {l}") | ||
|
||
final_ln_weight = ckpt[f'model.norm.weight'] | ||
if mcore_gpt: | ||
final_ln_base_name = f'model.decoder.final_layernorm.weight' | ||
else: | ||
final_ln_base_name = f'model.language_model.encoder.final_layernorm.weight' | ||
checkpoint['state_dict'][final_ln_base_name] = param_to_weights(final_ln_weight) | ||
|
||
output_layer_weight = ckpt[f'lm_head.weight'] | ||
if mcore_gpt: | ||
output_layer_base_name = f'model.output_layer.weight' | ||
else: | ||
output_layer_base_name = f'model.language_model.output_layer.weight' | ||
checkpoint['state_dict'][output_layer_base_name] = param_to_weights(output_layer_weight) | ||
|
||
checkpoint[MegatronGPTModel.CHECKPOINT_HYPER_PARAMS_KEY] = nemo_config | ||
del ckpt | ||
|
||
if nemo_config.get('megatron_amp_O2', False): | ||
keys = list(checkpoint['state_dict'].keys()) | ||
for key in keys: | ||
checkpoint['state_dict'][key.replace('model.', 'model.module.', 1)] = checkpoint['state_dict'].pop(key) | ||
|
||
model = load_model(MegatronGPTModel, checkpoint, strict=False, trainer=trainer) | ||
|
||
model._save_restore_connector = NLPSaveRestoreConnector() | ||
|
||
# cast to target precision and disable cpu init | ||
model = model.to(dtype=dtype) | ||
model.cfg.use_cpu_initialization = False | ||
|
||
model.save_to(args.out_file) | ||
logging.info(f'NeMo model saved to: {args.out_file}') | ||
|
||
|
||
if __name__ == '__main__': | ||
args = get_args() | ||
convert(args) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Function
load_model
is a bit convolved, can you avoid using it? I recommend instantiating model with sth likesee also #7977.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do you know if the
model.load_state_dict
withstrict=False
verifies if any weight were loaded at all? I'm not implying thatload_model
performs this check, rather want to understand if this is something we care doing at this stage of the script.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That PR #7977 has been merged. Could you please replace
load_model
withload_state_dict_helper
? The former is really cluttered and unnecessarily saves two tokenizers -- the one stored intokenizer.tokenizer_model
is not needed.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
And as for
strict=False
there are checks formissing_keys
andunexpected_keys
lists inload_state_dict_helper
that will complain if any expected weights are not loaded, or are superfluous.