Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TDT confidence fix #8982

Merged
merged 8 commits into from
Apr 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions nemo/collections/asr/parts/submodules/ctc_decoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,10 @@ class AbstractCTCDecoding(ConfidenceMixin):
Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.

tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).

method_cfg:
A dict-like object which contains the method name and settings to compute per-frame
confidence scores.
Expand Down Expand Up @@ -911,10 +915,15 @@ class CTCDecoding(AbstractCTCDecoding):
exclude_blank:
Bool flag indicating that blank token confidence scores are to be excluded
from the `token_confidence`.

aggregation:
Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.

tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).

method_cfg:
A dict-like object which contains the method name and settings to compute per-frame
confidence scores.
Expand Down Expand Up @@ -1122,6 +1131,10 @@ class CTCBPEDecoding(AbstractCTCDecoding):
Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.

tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).

method_cfg:
A dict-like object which contains the method name and settings to compute per-frame
confidence scores.
Expand Down
101 changes: 80 additions & 21 deletions nemo/collections/asr/parts/submodules/rnnt_decoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,9 @@ class AbstractRNNTDecoding(ConfidenceMixin):
from the `token_confidence`.
aggregation: Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.
tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).
method_cfg: A dict-like object which contains the method name and settings to compute per-frame
confidence scores.

Expand Down Expand Up @@ -209,7 +212,8 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):
self.compute_timestamps = self.cfg.get('compute_timestamps', None)
self.word_seperator = self.cfg.get('word_seperator', ' ')

if self.durations is not None and self.durations != []: # this means it's a TDT model.
self._is_tdt = self.durations is not None and self.durations != [] # this means it's a TDT model.
if self._is_tdt:
if blank_id == 0:
raise ValueError("blank_id must equal len(non_blank_vocabs) for TDT models")
if self.big_blank_durations is not None and self.big_blank_durations != []:
Expand Down Expand Up @@ -254,6 +258,12 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):
# initialize confidence-related fields
self._init_confidence(self.cfg.get('confidence_cfg', None))

if self._is_tdt:
if self.preserve_frame_confidence is True and self.preserve_alignments is False:
raise ValueError(
"If `preserve_frame_confidence` flag is set, then `preserve_alignments` flag must also be set."
)

# Confidence estimation is not implemented for these strategies
if (
not self.preserve_frame_confidence
Expand All @@ -264,7 +274,7 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):

if self.cfg.strategy == 'greedy':
if self.big_blank_durations is None or self.big_blank_durations == []:
if self.durations is None or self.durations == []:
if not self._is_tdt:
self.decoding = rnnt_greedy_decoding.GreedyRNNTInfer(
decoder_model=decoder,
joint_model=joint,
Expand All @@ -289,6 +299,7 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):
),
preserve_alignments=self.preserve_alignments,
preserve_frame_confidence=self.preserve_frame_confidence,
include_duration_confidence=self.tdt_include_duration_confidence,
confidence_method_cfg=self.confidence_method_cfg,
)
else:
Expand All @@ -307,7 +318,7 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):

elif self.cfg.strategy == 'greedy_batch':
if self.big_blank_durations is None or self.big_blank_durations == []:
if self.durations is None or self.durations == []:
if not self._is_tdt:
self.decoding = rnnt_greedy_decoding.GreedyBatchedRNNTInfer(
decoder_model=decoder,
joint_model=joint,
Expand All @@ -334,6 +345,7 @@ def __init__(self, decoding_cfg, decoder, joint, blank_id: int):
),
preserve_alignments=self.preserve_alignments,
preserve_frame_confidence=self.preserve_frame_confidence,
include_duration_confidence=self.tdt_include_duration_confidence,
confidence_method_cfg=self.confidence_method_cfg,
use_cuda_graph_decoder=self.cfg.greedy.get('use_cuda_graph_decoder', False),
)
Expand Down Expand Up @@ -530,7 +542,7 @@ def decode_hypothesis(self, hypotheses_list: List[Hypothesis]) -> List[Union[Hyp
if self.big_blank_durations is not None and self.big_blank_durations != []: # multi-blank RNNT
num_extra_outputs = len(self.big_blank_durations)
prediction = [p for p in prediction if p < self.blank_id - num_extra_outputs]
elif self.durations is not None and self.durations != []: # TDT model.
elif self._is_tdt: # TDT model.
prediction = [p for p in prediction if p < self.blank_id]
else: # standard RNN-T
prediction = [p for p in prediction if p != self.blank_id]
Expand Down Expand Up @@ -569,28 +581,69 @@ def compute_confidence(self, hypotheses_list: List[Hypothesis]) -> List[Hypothes
Returns:
A list of hypotheses with high-level confidence scores.
"""
if self.exclude_blank_from_confidence:
for hyp in hypotheses_list:
hyp.token_confidence = hyp.non_blank_frame_confidence
else:
if self._is_tdt:
# if self.tdt_include_duration_confidence is True then frame_confidence elements consist of two numbers
maybe_pre_aggregate = (
(lambda x: self._aggregate_confidence(x)) if self.tdt_include_duration_confidence else (lambda x: x)
)
for hyp in hypotheses_list:
offset = 0
token_confidence = []
if len(hyp.timestep) > 0:
for ts, te in zip(hyp.timestep, hyp.timestep[1:] + [len(hyp.frame_confidence)]):
if ts != te:
# <blank> tokens are considered to belong to the last non-blank token, if any.
token_confidence.append(
self._aggregate_confidence(
[hyp.frame_confidence[ts][offset]]
+ [fc[0] for fc in hyp.frame_confidence[ts + 1 : te]]
# trying to recover frame_confidence according to alignments
subsequent_blank_confidence = []
# going backwards since <blank> tokens are considered belonging to the last non-blank token.
for fc, fa in zip(hyp.frame_confidence[::-1], hyp.alignments[::-1]):
# there is only one score per frame most of the time
if len(fa) > 1:
for i, a in reversed(list(enumerate(fa))):
if a[-1] == self.blank_id:
if not self.exclude_blank_from_confidence:
subsequent_blank_confidence.append(maybe_pre_aggregate(fc[i]))
elif not subsequent_blank_confidence:
token_confidence.append(maybe_pre_aggregate(fc[i]))
else:
token_confidence.append(
self._aggregate_confidence(
[maybe_pre_aggregate(fc[i])] + subsequent_blank_confidence
)
)
)
offset = 0
subsequent_blank_confidence = []
else:
i, a = 0, fa[0]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please, add comments what's going on here and why

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There is a comment a few lines above # there is only one score per frame most of the time.
Apparently, it's not enough. The idea is to skip running for loop for frames with a single prediction.

if a[-1] == self.blank_id:
if not self.exclude_blank_from_confidence:
subsequent_blank_confidence.append(maybe_pre_aggregate(fc[i]))
elif not subsequent_blank_confidence:
token_confidence.append(maybe_pre_aggregate(fc[i]))
else:
token_confidence.append(hyp.frame_confidence[ts][offset])
offset += 1
token_confidence.append(
self._aggregate_confidence([maybe_pre_aggregate(fc[i])] + subsequent_blank_confidence)
)
subsequent_blank_confidence = []
token_confidence = token_confidence[::-1]
hyp.token_confidence = token_confidence
else:
if self.exclude_blank_from_confidence:
for hyp in hypotheses_list:
hyp.token_confidence = hyp.non_blank_frame_confidence
else:
for hyp in hypotheses_list:
offset = 0
token_confidence = []
if len(hyp.timestep) > 0:
for ts, te in zip(hyp.timestep, hyp.timestep[1:] + [len(hyp.frame_confidence)]):
if ts != te:
# <blank> tokens are considered to belong to the last non-blank token, if any.
token_confidence.append(
self._aggregate_confidence(
[hyp.frame_confidence[ts][offset]]
+ [fc[0] for fc in hyp.frame_confidence[ts + 1 : te]]
)
)
offset = 0
else:
token_confidence.append(hyp.frame_confidence[ts][offset])
offset += 1
hyp.token_confidence = token_confidence
if self.preserve_word_confidence:
for hyp in hypotheses_list:
hyp.word_confidence = self._aggregate_token_confidence(hyp)
Expand Down Expand Up @@ -1010,6 +1063,9 @@ class RNNTDecoding(AbstractRNNTDecoding):
from the `token_confidence`.
aggregation: Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.
tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).
method_cfg: A dict-like object which contains the method name and settings to compute per-frame
confidence scores.

Expand Down Expand Up @@ -1276,6 +1332,9 @@ class RNNTBPEDecoding(AbstractRNNTDecoding):
from the `token_confidence`.
aggregation: Which aggregation type to use for collapsing per-token confidence into per-word confidence.
Valid options are `mean`, `min`, `max`, `prod`.
tdt_include_duration: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).
method_cfg: A dict-like object which contains the method name and settings to compute per-frame
confidence scores.

Expand Down
19 changes: 18 additions & 1 deletion nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -2282,6 +2282,7 @@ class GreedyRNNTInferConfig:
max_symbols_per_step: Optional[int] = 10
preserve_alignments: bool = False
preserve_frame_confidence: bool = False
tdt_include_duration_confidence: bool = False
confidence_method_cfg: Optional[ConfidenceMethodConfig] = field(default_factory=lambda: ConfidenceMethodConfig())

def __post_init__(self):
Expand All @@ -2298,6 +2299,7 @@ class GreedyBatchedRNNTInferConfig:
max_symbols_per_step: Optional[int] = 10
preserve_alignments: bool = False
preserve_frame_confidence: bool = False
tdt_include_duration_confidence: bool = False
confidence_method_cfg: Optional[ConfidenceMethodConfig] = field(default_factory=lambda: ConfidenceMethodConfig())
loop_labels: bool = True
use_cuda_graph_decoder: bool = False
Expand Down Expand Up @@ -2337,6 +2339,9 @@ class GreedyTDTInfer(_GreedyRNNTInfer):
The length of the list corresponds to the Acoustic Length (T).
Each value in the list (Ti) is a torch.Tensor (U), representing 1 or more confidence scores.
U is the number of target tokens for the current timestep Ti.
include_duration_confidence: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).
confidence_method_cfg: A dict-like object which contains the method name and settings to compute per-frame
confidence scores.

Expand Down Expand Up @@ -2380,6 +2385,7 @@ def __init__(
max_symbols_per_step: Optional[int] = None,
preserve_alignments: bool = False,
preserve_frame_confidence: bool = False,
include_duration_confidence: bool = False,
confidence_method_cfg: Optional[DictConfig] = None,
):
super().__init__(
Expand All @@ -2392,6 +2398,7 @@ def __init__(
confidence_method_cfg=confidence_method_cfg,
)
self.durations = durations
self.include_duration_confidence = include_duration_confidence

@typecheck()
def forward(
Expand Down Expand Up @@ -2517,7 +2524,11 @@ def _greedy_decode(

if self.preserve_frame_confidence:
# insert confidence into last timestep
hypothesis.frame_confidence[-1].append(self._get_confidence(logp))
hypothesis.frame_confidence[-1].append(
(self._get_confidence_tensor(logp), self._get_confidence_tensor(duration_logp))
if self.include_duration_confidence
else self._get_confidence_tensor(logp)
)

del logp

Expand Down Expand Up @@ -2593,6 +2604,9 @@ class GreedyBatchedTDTInfer(_GreedyRNNTInfer):
The length of the list corresponds to the Acoustic Length (T).
Each value in the list (Ti) is a torch.Tensor (U), representing 1 or more confidence scores.
U is the number of target tokens for the current timestep Ti.
include_duration_confidence: Bool flag indicating that the duration confidence scores are to be calculated and
attached to the regular frame confidence,
making TDT frame confidence element a pair: (`prediction_confidence`, `duration_confidence`).
confidence_method_cfg: A dict-like object which contains the method name and settings to compute per-frame
confidence scores.

Expand Down Expand Up @@ -2636,6 +2650,7 @@ def __init__(
max_symbols_per_step: Optional[int] = None,
preserve_alignments: bool = False,
preserve_frame_confidence: bool = False,
include_duration_confidence: bool = False,
confidence_method_cfg: Optional[DictConfig] = None,
use_cuda_graph_decoder: bool = False,
):
Expand All @@ -2649,6 +2664,7 @@ def __init__(
confidence_method_cfg=confidence_method_cfg,
)
self.durations = durations
self.include_duration_confidence = include_duration_confidence

# Depending on availability of `blank_as_pad` support
# switch between more efficient batch decoding technique
Expand All @@ -2663,6 +2679,7 @@ def __init__(
max_symbols_per_step=self.max_symbols,
preserve_alignments=preserve_alignments,
preserve_frame_confidence=preserve_frame_confidence,
include_duration_confidence=include_duration_confidence,
confidence_method_cfg=confidence_method_cfg,
allow_cuda_graphs=use_cuda_graph_decoder,
)
Expand Down
Loading
Loading