Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add offline quantization script for QLoRA deployment #9455

Merged
merged 4 commits into from
Jul 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,10 @@ def backward(ctx, grad_output):
return grad_output @ weight.dequantize().to(grad_output.device), None


def nf4_quantize(x: torch.Tensor):
return NF4Weight(x).cuda()


class NF4LinearWrapper(nn.Module):
"""
NF4 Linear Layer for QLoRA as introduced in `QLORA: Efficient Finetuning of Quantized LLMs <https://arxiv.org/abs/2305.14314>`_.
Expand All @@ -117,7 +121,7 @@ def __init__(self, bf16_linear_weight: torch.Tensor):
super().__init__()

# quantize the weight upon initialization
self.weight = NF4Weight(bf16_linear_weight).cuda()
self.weight = nf4_quantize(bf16_linear_weight)

def forward(self, x: torch.Tensor):
"""
Expand Down
77 changes: 77 additions & 0 deletions scripts/checkpoint_converters/quantize_model_to_nf4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
from argparse import ArgumentParser
from typing import List

import torch
from pytorch_lightning import Trainer
from torch import nn

from nemo.collections.nlp.models.language_modeling.megatron_gpt_sft_model import MegatronGPTSFTModel
from nemo.collections.nlp.modules.common.megatron.adapters.qlora import nf4_quantize
from nemo.collections.nlp.parts.nlp_overrides import MegatronHalfPrecisionPlugin, NLPDDPStrategy
from nemo.utils import logging

'''
This script quantizes the weights of linear layers to NF4 precision, then saves them in BF16 precision.
The resulting model will have the same format as the input, but have weights compatible with adapters trained
with QLoRA.
Flow of QLoRA inference
- Path 1 (online quantize): similar to training, set eval peft_scheme to 'qlora' and linear layers will be quantized
immediately after model loading. This is applicable to framework inference only.
- Path 2 (offline quantize): run this script to get a new pretrained base model, then set eval `peft_scheme` to `lora`.
Path 1 and Path 2 yield identical inference results, but Path 2 enables deployment of a QLoRA model without further
changes downstream.

Example usage:
python scripts/checkpoint_converters/quantize_model_to_nf4.py \
--input_name_or_path <base_nemo_model> \
--output_path <quantized_nemo_model> \
--target_modules linear_qkv,linear_proj,linear_fc1,linear_fc2
'''


def corrupt_linear_weight_(model: nn.Module, target_modules: List[str]):
"""
Corrupt the linear weights of a model as specified by quantize_targets
"Corrupting" refers to quantizing the linear weights to NF4 then casting back to BF16
"""
state_dict = model.state_dict()
keys = state_dict.keys()
for k in keys:
if any(f"{l}.weight" in k for l in target_modules):
# Convert a BF16 tensor to NF4 then back to BF16
state_dict[k] = nf4_quantize(state_dict[k]).dequantize()
model.load_state_dict(state_dict)


def get_args():
parser = ArgumentParser()
parser.add_argument(
"--input_name_or_path",
type=str,
required=True,
help="Path to .nemo base model checkpoint",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to output quantized .nemo file.")
parser.add_argument(
"--target_modules",
type=str,
default="linear_qkv,linear_proj,linear_fc1,linear_fc2",
help="Comma separated list of which linear module(s) to quantize",
)
args = parser.parse_args()
return args


if __name__ == '__main__':
args = get_args()
dummy_trainer = Trainer(
devices=1,
accelerator='gpu',
strategy=NLPDDPStrategy(),
plugins=[MegatronHalfPrecisionPlugin(precision='bf16-mixed', device='cuda')],
)
model = MegatronGPTSFTModel.restore_from(args.input_name_or_path, trainer=dummy_trainer).to(torch.bfloat16)
corrupt_linear_weight_(model, args.target_modules.split(','))

model.save_to(args.output_path)
logging.info(f"Quantized model saved to {args.output_path}")
Loading