-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Rajeev Rao <rajeevrao@nvidia.com>
- Loading branch information
1 parent
7cb2863
commit 776651f
Showing
53 changed files
with
5,525 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# Tacotron 2 and WaveGlow Inference with TensorRT | ||
|
||
The Tacotron2 and WaveGlow models form a text-to-speech (TTS) system that enables users to synthesize natural sounding speech from raw transcripts without any additional information such as patterns and/or rhythms of speech. This is an implementation of Tacotron2 for PyTorch, tested and maintained by NVIDIA, and provides scripts to perform high-performance inference using NVIDIA TensorRT. More information about the TTS system and its training can be found in the | ||
[NVIDIA DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2). | ||
|
||
NVIDIA TensorRT is a platform for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep learning inference applications. After optimizing the compute-intensive acoustic model with NVIDIA TensorRT, inference throughput increased by up to 1.4x over native PyTorch in mixed precision. | ||
|
||
### Software Versions | ||
|
||
Software version configuration tested for the instructions that follow: | ||
|
||
|Software|Version| | ||
|--------|-------| | ||
|Python|3.6.9| | ||
|CUDA|11.0.171| | ||
|Apex|0.1| | ||
|TensorRT|7.1.3.4| | ||
|PyTorch|1.5.1| | ||
|
||
|
||
## Quick Start Guide | ||
|
||
1. Build and launch the container as described in [TensorRT OSS README](https://github.com/NVIDIA/TensorRT/blob/master/README.md). | ||
|
||
**Note:** After this point, all commands should be run from within the container. | ||
|
||
2. Install prerequisite software for TTS sample: | ||
```bash | ||
cd $TRT_SOURCE/demo/Tacotron2 | ||
|
||
export LD_LIBRARY_PATH=$TRT_SOURCE/build/out:/tensorrt/lib:$LD_LIBRARY_PATH | ||
pip3 install /tensorrt/python/tensorrt-7.1*-cp36-none-linux_x86_64.whl | ||
|
||
bash ./scripts/install_prerequisites.sh | ||
``` | ||
3. Download pretrained checkpoints from [NGC](https://ngc.nvidia.com/catalog/models) into the `./checkpoints` directory: | ||
|
||
- [Tacotron2 checkpoint](https://ngc.nvidia.com/models/nvidia:tacotron2pyt_fp16) | ||
- [WaveGlow checkpoint](https://ngc.nvidia.com/models/nvidia:waveglow256pyt_fp16) | ||
|
||
```bash | ||
cd $TRT_SOURCE/demo/Tacotron2 | ||
./scripts/download_checkpoints.sh | ||
``` | ||
|
||
4. Export the models to ONNX intermediate representation (ONNX IR). | ||
Export Tacotron 2 to three ONNX parts: Encoder, Decoder, and Postnet: | ||
|
||
```bash | ||
mkdir -p output | ||
python exports/export_tacotron2_onnx.py --tacotron2 ./checkpoints/tacotron2pyt_fp16_v3/tacotron2_1032590_6000_amp -o output/ --fp16 | ||
``` | ||
|
||
Export WaveGlow to ONNX IR: | ||
|
||
```bash | ||
python exports/export_waveglow_onnx.py --waveglow checkpoints/waveglow256pyt_fp16_v2/waveglow_1076430_14000_amp --wn-channels 256 -o output/ --fp16 | ||
``` | ||
|
||
After running the above commands, there should be four new ONNX files in `./output/` directory: | ||
`encoder.onnx`, `decoder_iter.onnx`, `postnet.onnx`, and `waveglow.onnx`. | ||
|
||
5. Export the ONNX IRs to TensorRT engines with fp16 mode enabled: | ||
|
||
```bash | ||
python trt/export_onnx2trt.py --encoder output/encoder.onnx --decoder output/decoder_iter.onnx --postnet output/postnet.onnx --waveglow output/waveglow.onnx -o output/ --fp16 | ||
``` | ||
|
||
After running the command, there should be four new engine files in `./output/` directory: | ||
`encoder_fp16.engine`, `decoder_iter_fp16.engine`, `postnet_fp16.engine`, and `waveglow_fp16.engine`. | ||
|
||
6. Run TTS inference pipeline with fp16: | ||
|
||
```bash | ||
python trt/inference_trt.py -i phrases/phrase.txt --encoder output/encoder_fp16.engine --decoder output/decoder_iter_fp16.engine --postnet output/postnet_fp16.engine --waveglow output/waveglow_fp16.engine -o output/ --fp16 | ||
``` | ||
|
||
## Performance | ||
|
||
### Benchmarking | ||
|
||
The following section shows how to benchmark the TensorRT inference performance for our Tacotron2 + Waveglow TTS. | ||
|
||
#### TensorRT inference benchmark | ||
|
||
Before running the benchmark script, please download the checkpoints and build the TensorRT engines for the Tacotron2 and Waveglow models as prescribed in the [Quick Start Guide](#quick-start-guide) above. | ||
|
||
The inference benchmark is performed on a single GPU by the `inference_benchmark.sh` script, which runs 3 warm-up iterations then runs timed inference for 1000 iterations. | ||
|
||
```bash | ||
bash scripts/inference_benchmark.sh | ||
``` | ||
|
||
*Note*: For benchmarking we use WaveGlow with 256 residual channels. | ||
|
||
### Results | ||
|
||
#### Inference performance: NVIDIA T4 (16GB) | ||
|
||
|Framework|Batch size|Input length|Precision|Avg latency (s)|Latency std (s)|Latency confidence interval 90% (s)|Latency confidence interval 95% (s)|Latency confidence interval 99% (s)|Throughput (samples/sec)|Speed-up PyT+TRT/TRT|Avg mels generated (81 mels=1 sec of speech)| Avg audio length (s)| Avg RTF| | ||
|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:| | ||
|PyT+TRT|1| 128| FP16| 0.93| 0.15| 1.09| 1.13| 1.49| 169,104| 1.78| 602| 7.35| 7.9| | ||
|PyT |1| 128| FP16| 1.58| 0.07| 1.65| 1.70| 1.76| 97,991| 1.00| 605| 6.94| 4.4| | ||
|
||
#### Inference performance: NVIDIA V100 (16GB) | ||
|
||
|Framework|Batch size|Input length|Precision|Avg latency (s)|Latency std (s)|Latency confidence interval 90% (s)|Latency confidence interval 95% (s)|Latency confidence interval 99% (s)|Throughput (samples/sec)|Speed-up PyT+TRT/TRT|Avg mels generated (81 mels=1 sec of speech)| Avg audio length (s)| Avg RTF| | ||
|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:|---:| | ||
|PyT+TRT|1| 128| FP16| 0.63| 0.02| 0.65| 0.66| 0.67| 242,466| 1.78| 599| 7.09| 10.9| | ||
|PyT |1| 128| FP16| 1.13| 0.03| 1.17| 1.17| 1.21| 136,160| 1.00| 602| 7.10| 6.3| |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
import numpy as np | ||
from scipy.signal import get_window | ||
import librosa.util as librosa_util | ||
|
||
|
||
def window_sumsquare(window, n_frames, hop_length=200, win_length=800, | ||
n_fft=800, dtype=np.float32, norm=None): | ||
""" | ||
# from librosa 0.6 | ||
Compute the sum-square envelope of a window function at a given hop length. | ||
This is used to estimate modulation effects induced by windowing | ||
observations in short-time fourier transforms. | ||
Parameters | ||
---------- | ||
window : string, tuple, number, callable, or list-like | ||
Window specification, as in `get_window` | ||
n_frames : int > 0 | ||
The number of analysis frames | ||
hop_length : int > 0 | ||
The number of samples to advance between frames | ||
win_length : [optional] | ||
The length of the window function. By default, this matches `n_fft`. | ||
n_fft : int > 0 | ||
The length of each analysis frame. | ||
dtype : np.dtype | ||
The data type of the output | ||
Returns | ||
------- | ||
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` | ||
The sum-squared envelope of the window function | ||
""" | ||
if win_length is None: | ||
win_length = n_fft | ||
|
||
n = n_fft + hop_length * (n_frames - 1) | ||
x = np.zeros(n, dtype=dtype) | ||
|
||
# Compute the squared window at the desired length | ||
win_sq = get_window(window, win_length, fftbins=True) | ||
win_sq = librosa_util.normalize(win_sq, norm=norm)**2 | ||
win_sq = librosa_util.pad_center(win_sq, n_fft) | ||
|
||
# Fill the envelope | ||
for i in range(n_frames): | ||
sample = i * hop_length | ||
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] | ||
return x | ||
|
||
|
||
def griffin_lim(magnitudes, stft_fn, n_iters=30): | ||
""" | ||
PARAMS | ||
------ | ||
magnitudes: spectrogram magnitudes | ||
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods | ||
""" | ||
|
||
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) | ||
angles = angles.astype(np.float32) | ||
angles = torch.autograd.Variable(torch.from_numpy(angles)) | ||
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | ||
|
||
for i in range(n_iters): | ||
_, angles = stft_fn.transform(signal) | ||
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | ||
return signal | ||
|
||
|
||
def dynamic_range_compression(x, C=1, clip_val=1e-5): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor | ||
""" | ||
return torch.log(torch.clamp(x, min=clip_val) * C) | ||
|
||
|
||
def dynamic_range_decompression(x, C=1): | ||
""" | ||
PARAMS | ||
------ | ||
C: compression factor used to compress | ||
""" | ||
return torch.exp(x) / C |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
from librosa.filters import mel as librosa_mel_fn | ||
from common.audio_processing import dynamic_range_compression, dynamic_range_decompression | ||
from common.stft import STFT | ||
|
||
|
||
class LinearNorm(torch.nn.Module): | ||
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | ||
super(LinearNorm, self).__init__() | ||
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | ||
|
||
torch.nn.init.xavier_uniform_( | ||
self.linear_layer.weight, | ||
gain=torch.nn.init.calculate_gain(w_init_gain)) | ||
|
||
def forward(self, x): | ||
return self.linear_layer(x) | ||
|
||
|
||
class ConvNorm(torch.nn.Module): | ||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | ||
padding=None, dilation=1, bias=True, w_init_gain='linear'): | ||
super(ConvNorm, self).__init__() | ||
if padding is None: | ||
assert(kernel_size % 2 == 1) | ||
padding = int(dilation * (kernel_size - 1) / 2) | ||
|
||
self.conv = torch.nn.Conv1d(in_channels, out_channels, | ||
kernel_size=kernel_size, stride=stride, | ||
padding=padding, dilation=dilation, | ||
bias=bias) | ||
|
||
torch.nn.init.xavier_uniform_( | ||
self.conv.weight, | ||
gain=torch.nn.init.calculate_gain(w_init_gain)) | ||
|
||
def forward(self, signal): | ||
return self.conv(signal) | ||
|
||
|
||
class TacotronSTFT(torch.nn.Module): | ||
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | ||
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | ||
mel_fmax=8000.0): | ||
super(TacotronSTFT, self).__init__() | ||
self.n_mel_channels = n_mel_channels | ||
self.sampling_rate = sampling_rate | ||
self.stft_fn = STFT(filter_length, hop_length, win_length) | ||
mel_basis = librosa_mel_fn( | ||
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax) | ||
mel_basis = torch.from_numpy(mel_basis).float() | ||
self.register_buffer('mel_basis', mel_basis) | ||
|
||
def spectral_normalize(self, magnitudes): | ||
output = dynamic_range_compression(magnitudes) | ||
return output | ||
|
||
def spectral_de_normalize(self, magnitudes): | ||
output = dynamic_range_decompression(magnitudes) | ||
return output | ||
|
||
def mel_spectrogram(self, y): | ||
"""Computes mel-spectrograms from a batch of waves | ||
PARAMS | ||
------ | ||
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | ||
RETURNS | ||
------- | ||
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | ||
""" | ||
assert(torch.min(y.data) >= -1) | ||
assert(torch.max(y.data) <= 1) | ||
|
||
magnitudes, phases = self.stft_fn.transform(y) | ||
magnitudes = magnitudes.data | ||
mel_output = torch.matmul(self.mel_basis, magnitudes) | ||
mel_output = self.spectral_normalize(mel_output) | ||
return mel_output |
Oops, something went wrong.