You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thank you for sharing the implementation of the DDGAN model. I am trying to train the model on FFHQ 256x256 dataset. I used the NVLabs/NVAE repository for the dataset preparation. I have the file structure as follows:
To use another dataset similar to the CelebA-HQ 256x256, I modified the train function given in the line 190 of the train_ddgan.py file.
Node rank 0, local proc 0, global proc 0
Node rank 0, local proc 1, global proc 1
Node rank 0, local proc 2, global proc 2
Node rank 0, local proc 3, global proc 3
Process Process-4:
Traceback (most recent call last):
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "train_ddgan.py", line 482, in init_processes
fn(rank, gpu, args)
File "train_ddgan.py", line 248, in train
dataset = LMDBDataset(root='/datasets/ffhq-lmdb/', name='ffhq', train=True, transform=train_transform)
File "/home/manisha.padala/gan/denoising-diffusion-gan/datasets_prep/lmdb_datasets.py", line 33, in __init__
self.data_lmdb = lmdb.open(lmdb_path, readonly=True, max_readers=1,
lmdb.Error: /datasets/ffhq-lmdb/train.lmdb: No such file or directory
Process Process-2:
Traceback (most recent call last):
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "train_ddgan.py", line 482, in init_processes
fn(rank, gpu, args)
File "train_ddgan.py", line 248, in train
dataset = LMDBDataset(root='/datasets/ffhq-lmdb/', name='ffhq', train=True, transform=train_transform)
File "/home/manisha.padala/gan/denoising-diffusion-gan/datasets_prep/lmdb_datasets.py", line 33, in __init__
self.data_lmdb = lmdb.open(lmdb_path, readonly=True, max_readers=1,
lmdb.Error: /datasets/ffhq-lmdb/train.lmdb: No such file or directory
Process Process-1:
Traceback (most recent call last):
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "train_ddgan.py", line 482, in init_processes
fn(rank, gpu, args)
File "train_ddgan.py", line 248, in train
dataset = LMDBDataset(root='/datasets/ffhq-lmdb/', name='ffhq', train=True, transform=train_transform)
File "/home/manisha.padala/gan/denoising-diffusion-gan/datasets_prep/lmdb_datasets.py", line 33, in __init__
self.data_lmdb = lmdb.open(lmdb_path, readonly=True, max_readers=1,
lmdb.Error: /datasets/ffhq-lmdb/train.lmdb: No such file or directory
Process Process-3:
Traceback (most recent call last):
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
self.run()
File "/usr/local/apps/python-3.8.3/lib/python3.8/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "train_ddgan.py", line 482, in init_processes
fn(rank, gpu, args)
File "train_ddgan.py", line 248, in train
dataset = LMDBDataset(root='/datasets/ffhq-lmdb/', name='ffhq', train=True, transform=train_transform)
File "/home/manisha.padala/gan/denoising-diffusion-gan/datasets_prep/lmdb_datasets.py", line 33, in __init__
self.data_lmdb = lmdb.open(lmdb_path, readonly=True, max_readers=1,
lmdb.Error: /datasets/ffhq-lmdb/train.lmdb: No such file or directory
The text was updated successfully, but these errors were encountered:
Thank you for sharing the implementation of the DDGAN model. I am trying to train the model on FFHQ 256x256 dataset. I used the NVLabs/NVAE repository for the dataset preparation. I have the file structure as follows:
To use another dataset similar to the CelebA-HQ 256x256, I modified the
train
function given in the line 190 of thetrain_ddgan.py
file.My implementation for the DDGAN uses 4 NVIDIA GTX 1080ti GPUs with a total batch size of 32 for training the CelebA-HQ 256x256 dataset
(
--batch_size 8
and--num_process_per_node 4
)I use the following command for training
!python3 train_ddgan.py --dataset ffhq_256 --image_size 256 --exp ddgan_celebahq_exp1 --num_channels 3 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 2 --num_res_blocks 2 --batch_size 8 --num_epoch 800 --ngf 64 --embedding_type positional --use_ema --r1_gamma 2. --z_emb_dim 256 --lr_d 1e-4 --lr_g 2e-4 --lazy_reg 10 --num_process_per_node 4 --save_content
I am getting the following output message:
The text was updated successfully, but these errors were encountered: