Skip to content

Official Implementations of "Text Prompt Region Decomposition for Effective Facial Expression Recognition"

Notifications You must be signed in to change notification settings

NW9712/TPRD-FER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TPRD-FER-Official-Code-Implementations

Official Implementations of "Text Prompt Region Decomposition for Effective Facial Expression Recognition"

Our manuscript is currently under review; therefore, this project only provides inference code and weight files for testing.

The training code will be availabel later.


Installation

  1. Installation the package requirements
pip install -r requirements.txt

Data Preparation

  1. The reorganized version of RAF-DB can be downloaded at APViT:
data/
├─ RAF-DB/
│  ├─ basic/
│  │  ├─ EmoLabel/
│  │  │  ├─ list_patition_label.txt
│  │  │  ├─ rafdb_occlusion_list.txt
│  │  │  ├─ val_raf_db_list.txt
│  │  │  ├─ val_raf_db_list_45.txt
│  │  ├─ Image/
│  │  │  ├─ aligned_224/  # reagliend by MTCNN
  1. The downloaded AffectNet are organized as follow:
data/
├─ AffectNet/
│  ├─ Manually_Annotated_Images/
│  │  ├─ training.csv
│  │  ├─ validation.csv
│  │  ├─ 1/
│  │  │  ├─ images
│  │  │  ├─ ...
│  │  ├─ 2/
│  │  ├─ ./
  1. The FER2013, FERPlus, and pre-processing code are available at https://github.com/microsoft/FERPlus:

  2. The Occlusion- and Pose- variant lists can be downloaded at RAN:


Model checkpoints

  • Download model checkpoints from Google Drive.
  • Modify the path of the downloaded weight files in the configuration files.

Testing

python test.py --config ${CONFIG_PATH}

About

Official Implementations of "Text Prompt Region Decomposition for Effective Facial Expression Recognition"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages