Skip to content

Commit

Permalink
feat: add blas/ext/base/dapxsumkbn-wasm
Browse files Browse the repository at this point in the history
PR-URL: stdlib-js#3204
Ref: stdlib-js#2039
Co-authored-by: Athan Reines <kgryte@gmail.com>
Reviewed-by: Athan Reines <kgryte@gmail.com>
Reviewed-by: Muhammad Haris <harriskhan047@outlook.com>
Reviewed-by: Aman Bhansali <bhansali.1@iitj.ac.in>
Signed-off-by: Snehil Shah <snehilshah.989@gmail.com>
Co-authored-by: stdlib-bot <82920195+stdlib-bot@users.noreply.github.com>
  • Loading branch information
3 people authored and Neerajpathak07 committed Dec 4, 2024
1 parent f712223 commit 73aef4a
Show file tree
Hide file tree
Showing 34 changed files with 4,511 additions and 1 deletion.
293 changes: 293 additions & 0 deletions lib/node_modules/@stdlib/blas/ext/base/dapxsumkbn-wasm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
<!--
@license Apache-2.0
Copyright (c) 2024 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# dapxsumkbn

> Add a scalar constant to each double-precision floating-point strided array element and compute the sum using an improved Kahan–Babuška algorithm.
<section class="usage">

## Usage

```javascript
var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn-wasm' );
```

#### dapxsumkbn.main( N, alpha, x, strideX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var sum = dapxsumkbn.main( x.length, 5.0, x, 1 );
// returns 16.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **alpha**: scalar constant.
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **strideX**: stride length for `x`.

The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to access every other element in `x`,

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var sum = dapxsumkbn.main( 4, 5.0, x, 2 );
// returns 25.0
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var sum = dapxsumkbn.main( 4, 5.0, x1, 2 );
// returns 25.0
```

#### dapxsumkbn.ndarray( N, alpha, x, strideX, offsetX )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm and alternative indexing semantics.

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var sum = dapxsumkbn.ndarray( x.length, 5.0, x, 1, 0 );
// returns 16.0
```

The function has the following additional parameters:

- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to access every other element starting from the second element:

```javascript
var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dapxsumkbn.ndarray( 4, 5.0, x, 2, 1 );
// returns 25.0
```

* * *

### Module

#### dapxsumkbn.Module( memory )

Returns a new WebAssembly [module wrapper][@stdlib/wasm/module-wrapper] instance which uses the provided WebAssembly [memory][@stdlib/wasm/memory] instance as its underlying memory.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dapxsumkbn.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();
```

#### dapxsumkbn.Module.prototype.main( N, alpha, xp, sx )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dapxsumkbn.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'float64';

// Specify a vector length:
var N = 3;

// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;

// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );

// Perform computation:
var sum = mod.main( N, 5.0, xptr, 1 );
// returns 21.0
```

The function has the following parameters:

- **N**: number of indexed elements.
- **alpha**: scalar constant.
- **xp**: input [`Float64Array`][@stdlib/array/float64] pointer (i.e., byte offset).
- **sx**: stride length for `x`.

#### dapxsumkbn.Module.prototype.ndarray( N, alpha, xp, sx, ox )

Adds a scalar constant to each double-precision floating-point strided array element and computes the sum using an improved Kahan–Babuška algorithm and alternative indexing semantics.

<!-- eslint-disable node/no-sync -->

```javascript
var Memory = require( '@stdlib/wasm/memory' );
var oneTo = require( '@stdlib/array/one-to' );
var zeros = require( '@stdlib/array/zeros' );

// Create a new memory instance with an initial size of 10 pages (640KiB) and a maximum size of 100 pages (6.4MiB):
var mem = new Memory({
'initial': 10,
'maximum': 100
});

// Create a BLAS routine:
var mod = new dapxsumkbn.Module( mem );
// returns <Module>

// Initialize the routine:
mod.initializeSync();

// Define a vector data type:
var dtype = 'float64';

// Specify a vector length:
var N = 3;

// Define a pointer (i.e., byte offset) for storing the input vector:
var xptr = 0;

// Write vector values to module memory:
mod.write( xptr, oneTo( N, dtype ) );

// Perform computation:
var sum = mod.ndarray( N, 5.0, xptr, 1, 0 );
// returns 21.0
```

The function has the following additional parameters:

- **ox**: starting index for `x`.

</section>

<!-- /.usage -->

<section class="notes">

* * *

## Notes

- If `N <= 0`, both `main` and `ndarray` methods return `0.0`.
- This package implements routines using WebAssembly. When provided arrays which are not allocated on a `dapxsumkbn` module memory instance, data must be explicitly copied to module memory prior to computation. Data movement may entail a performance cost, and, thus, if you are using arrays external to module memory, you should prefer using [`@stdlib/blas/base/dapxsumkbn`][@stdlib/blas/ext/base/dapxsumkbn]. However, if working with arrays which are allocated and explicitly managed on module memory, you can achieve better performance when compared to the pure JavaScript implementations found in [`@stdlib/blas/base/dapxsumkbn`][@stdlib/blas/ext/base/dapxsumkbn]. Beware that such performance gains may come at the cost of additional complexity when having to perform manual memory management. Choosing between implementations depends heavily on the particular needs and constraints of your application, with no one choice universally better than the other.

</section>

<!-- /.notes -->

<section class="examples">

* * *

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dapxsumkbn = require( '@stdlib/blas/ext/base/dapxsumkbn-wasm' );

var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, 0, 100, opts );
console.log( x );

var sum = dapxsumkbn.ndarray( x.length, 5.0, x, 1, 0 );
console.log( sum );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray

[@stdlib/array/float64]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/float64

[@stdlib/wasm/memory]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/wasm/memory

[@stdlib/wasm/module-wrapper]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/wasm/module-wrapper

[@stdlib/blas/ext/base/dapxsumkbn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/blas/ext/base/dapxsumkbn

</section>

<!-- /.links -->
Loading

0 comments on commit 73aef4a

Please sign in to comment.