Skip to content

Commit

Permalink
simple align qwen2vl kv_seq_len calculation with qwen2 (huggingface#3…
Browse files Browse the repository at this point in the history
…3161)

* qwen2vl_align_kv_seqlen_to_qwen2

* flash att test

* [run-slow] qwen2_vl

* [run-slow] qwen2_vl fix OOM

* [run-slow] qwen2_vl

* Update tests/models/qwen2_vl/test_modeling_qwen2_vl.py

Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>

* Update tests/models/qwen2_vl/test_modeling_qwen2_vl.py

Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>

* code quality

---------

Co-authored-by: baishuai.bs <1051314669@qq.com>
Co-authored-by: ShuaiBai623 <baishuai623@icloud.com>
Co-authored-by: ShuaiBai623 <43326198+ShuaiBai623@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
  • Loading branch information
5 people authored and itazap committed Sep 20, 2024
1 parent 3b4b232 commit 2e85337
Show file tree
Hide file tree
Showing 2 changed files with 116 additions and 55 deletions.
22 changes: 18 additions & 4 deletions src/transformers/models/qwen2_vl/modeling_qwen2_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -550,8 +550,13 @@ def forward(

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += cache_position[0] + 1

if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids, self.rope_scaling["mrope_section"]
Expand Down Expand Up @@ -632,10 +637,19 @@ def forward(

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += cache_position[0] + 1
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = cache_position[-1]
rotary_seq_len = (
max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len
)

cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)

query_states, key_states = apply_multimodal_rotary_pos_emb(
Expand Down
149 changes: 98 additions & 51 deletions tests/models/qwen2_vl/test_modeling_qwen2_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,9 @@
is_vision_available,
)
from transformers.testing_utils import (
require_bitsandbytes,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
Expand Down Expand Up @@ -311,19 +312,17 @@ def setUp(self):
],
}
]
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
url = "https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/demo_small.jpg"
self.image = Image.open(requests.get(url, stream=True).raw)

def tearDown(self):
gc.collect()
torch.cuda.empty_cache()

@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
load_in_4bit=True,
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)

text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
Expand All @@ -334,33 +333,34 @@ def test_small_model_integration_test(self):

expected_pixel_slice = torch.tensor(
[
[0.8501, 0.8647, 0.8647],
[1.0106, 1.0106, 1.0252],
[0.9960, 1.0106, 1.0252],
[1.0982, 1.1128, 1.1274],
[1.0836, 1.0982, 1.0982],
[1.1858, 1.1858, 1.1858],
[0.8792, 0.8792, 0.9084],
[1.1858, 1.1858, 1.2296],
[1.2004, 1.2004, 1.2150],
[1.4340, 1.4340, 1.4194],
[1.3902, 1.4048, 1.4194],
[1.5216, 1.5362, 1.5362],
],
dtype=torch.float32,
device="cpu",
)
assert torch.allclose(expected_pixel_slice, inputs.pixel_values[:6, :3], atol=1e-3)
assert torch.allclose(expected_pixel_slice, inputs.pixel_values[:6, :3], atol=3e-3)

# verify generation
inputs = inputs.to(torch_device)

output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = "system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?assistant\nThe dog in the picture appears to be a Labrador Retriever or a similar breed. Labradors are known for their friendly and intelligent nature,"
EXPECTED_DECODED_TEXT = "system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets"

self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)

@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", load_in_4bit=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
Expand All @@ -370,78 +370,125 @@ def test_small_model_integration_test_batch(self):
output = model.generate(**inputs, max_new_tokens=30)

EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?assistant\nThe dog in the picture appears to be a Labrador Retriever or a similar breed. Labradors are known for their friendly and intelligent nature,",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?assistant\nThe dog in the image appears to be a Labrador Retriever or a similar breed. Labradors are known for their friendly and outgoing nature,",
]
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True)[0],
self.processor.batch_decode(output, skip_special_tokens=True)[1],
)

@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_wo_image(self):
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", load_in_4bit=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], return_tensors="pt").to(torch_device)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)

# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)

EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets',
'system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to assist with various tasks and answer questions to the best of my'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)

@slow
def test_small_model_integration_test_batch_different_resolutions(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
text2 = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
image2 = self.image.resize((224, 224))
inputs = self.processor(text=[text, text2], images=[self.image, image2], padding=True, return_tensors="pt").to(
torch_device
)

# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)

EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?assistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and outgoing personalities, as well as their",
"system\nYou are a helpful assistant.user\nWho are you?assistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to assist with various tasks and answer a wide range of questions to",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)

@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)

# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)

EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]

self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True)[0],
self.processor.batch_decode(output, skip_special_tokens=True)[1],
)

@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_different_resolutions(self):
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", load_in_4bit=True)
text, vision_infos = self.processor.apply_chat_template(
self.messages, tokenize=False, add_generation_prompt=True
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_wo_image_flashatt2(self):
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
"resized_height": 504,
"resized_width": 252,
},
{"type": "text", "text": "What kind of dog is this?"},
],
}
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2, vision_infos2 = self.processor.apply_chat_template(
messages2, tokenize=False, add_generation_prompt=True
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
inputs = self.processor(
text=[text, text2], vision_infos=[vision_infos, vision_infos2], return_tensors="pt"
).to(torch_device)

# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)

EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?assistant\nThe dog in the picture appears to be a Labrador Retriever or a similar breed. Labradors are known for their friendly and intelligent nature,",
"system\nYou are a helpful assistant.\nuser\nWho are you?assistant\nI am a large language model created by Alibaba Cloud. I am called Qwen.",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to answer a wide range of questions and provide information on various topics",
]

self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
Expand Down

0 comments on commit 2e85337

Please sign in to comment.