- pay attention to the package version while
pip install
, my recipe as below, especially for the first part - some minor code changes in this repo
- Install
tensor2robot
and putt2r_pb2.py
intensor2robot/proto/
, or generate compiled code on your own with protoc
# packages in environment at /home/nirj/miniconda3/envs/RT1:
#
# Name Version Build Channel
python 3.7.12 hf930737_100_cpython https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
tensorflow 1.15.5 pypi_0 pypi
tensorflow-probability 0.7.0 pypi_0 pypi
tf-agents 0.3.0 pypi_0 pypi
gast 0.2.2 pypi_0 pypi
gin 0.1.6 pypi_0 pypi
gin-config 0.1.3 pypi_0 pypi
protobuf 3.19.0 pypi_0 pypi
_libgcc_mutex 0.1 conda_forge https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
_openmp_mutex 4.5 2_gnu https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
absl-py 1.4.0 pypi_0 pypi
astor 0.8.1 pypi_0 pypi
bzip2 1.0.8 h7f98852_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
ca-certificates 2022.12.7 ha878542_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
cloudpickle 2.2.1 pypi_0 pypi
decorator 5.1.1 pypi_0 pypi
dm-tree 0.1.8 pypi_0 pypi
google-pasta 0.2.0 pypi_0 pypi
grpcio 1.51.3 pypi_0 pypi
gym 0.23.0 pypi_0 pypi
gym-notices 0.0.8 pypi_0 pypi
h5py 2.10.0 pypi_0 pypi
importlib-metadata 6.1.0 pypi_0 pypi
keras-applications 1.0.8 pypi_0 pypi
keras-preprocessing 1.1.2 pypi_0 pypi
ld_impl_linux-64 2.40 h41732ed_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libffi 3.4.2 h7f98852_5 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgcc-ng 12.2.0 h65d4601_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libgomp 12.2.0 h65d4601_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libnsl 2.0.0 h7f98852_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libsqlite 3.40.0 h753d276_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libstdcxx-ng 12.2.0 h46fd767_19 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libuuid 2.32.1 h7f98852_1000 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
libzlib 1.2.13 h166bdaf_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
markdown 3.4.1 pypi_0 pypi
markupsafe 2.1.2 pypi_0 pypi
mock 5.0.1 pypi_0 pypi
ncurses 6.3 h27087fc_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
numpy 1.18.0 pypi_0 pypi
openssl 3.1.0 h0b41bf4_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
opt-einsum 3.3.0 pypi_0 pypi
pillow 9.4.0 pypi_0 pypi
pip 23.0.1 pyhd8ed1ab_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
pygame 2.1.0 pypi_0 pypi
readline 8.1.2 h0f457ee_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
setuptools 67.6.0 pyhd8ed1ab_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
six 1.16.0 pypi_0 pypi
sqlite 3.40.0 h4ff8645_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
tensorboard 1.15.0 pypi_0 pypi
tensorflow-estimator 1.15.1 pypi_0 pypi
termcolor 2.2.0 pypi_0 pypi
tk 8.6.12 h27826a3_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
typing-extensions 4.5.0 pypi_0 pypi
werkzeug 2.2.3 pypi_0 pypi
wheel 0.40.0 pyhd8ed1ab_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
wrapt 1.15.0 pypi_0 pypi
xz 5.2.6 h166bdaf_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
zipp 3.15.0 pypi_0 pypi
This is not an officially supported Google product.
This repository is a collection code files and artifacts for running Robotics Transformer or RT-1.
- Film efficient net based image tokenizer backbone
- Token learner based compression of input tokens
- Transformer for end to end robotic control
- Testing utilities
Clone the repo
git clone https://github.com/google-research/robotics_transformer.git
pip install -r robotics_transformer/requirements.txt
python -m robotics_transformer.tokenizers.action_tokenizer.test
To run RT-1 tests, you can clone the git repo and run bazel:
git clone https://github.com/google_research/robotics_transformer.git
cd robotics_transformer
bazel test ...
Checkpoints are included in trained_checkpoints/ folder for three models:
- RT-1 trained on 700 tasks
- RT-1 jointly trained on EDR and Kuka data
- RT-1 jointly trained on sim and real data
They are tensorflow SavedModel files. Instructions on usage can be found here
The current repository includes an initial set of libraries for early adoption. More components may come in future releases.
The Robotics Transformer library is licensed under the terms of the Apache license.