Skip to content

Commit

Permalink
add tsmixerx to lists and fix multivariate
Browse files Browse the repository at this point in the history
  • Loading branch information
candalfigomoro authored May 8, 2024
1 parent 8a6832a commit 5516c29
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
[![All Contributors](https://img.shields.io/badge/all_contributors-11-orange.svg?style=flat-square)](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:END -->

**NeuralForecast** offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: `MLP`, `LSTM`, `GRU`, `RNN`, `TCN`, `TimesNet`, `BiTCN`, `DeepAR`, `NBEATS`, `NBEATSx`, `NHITS`, `TiDE`, `DeepNPTS`, `TSMixer`, `MLPMultivariate`, `DLinear`, `NLinear`, `TFT`, `Informer`, `AutoFormer`, `FedFormer`, `PatchTST`, `iTransformer`, `StemGNN`, and `TimeLLM`.
**NeuralForecast** offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: `MLP`, `LSTM`, `GRU`, `RNN`, `TCN`, `TimesNet`, `BiTCN`, `DeepAR`, `NBEATS`, `NBEATSx`, `NHITS`, `TiDE`, `DeepNPTS`, `TSMixer`, `TSMixerx`, `MLPMultivariate`, `DLinear`, `NLinear`, `TFT`, `Informer`, `AutoFormer`, `FedFormer`, `PatchTST`, `iTransformer`, `StemGNN`, and `TimeLLM`.
</div>

## Installation
Expand Down Expand Up @@ -61,7 +61,7 @@ Unfortunately, available implementations and published research are yet to reali

## Features

* Fast and accurate implementations of `MLP`, `LSTM`, `GRU`, `RNN`, `TCN`, `TimesNet`, `BiTCN`, `DeepAR`, `NBEATS`, `NBEATSx`, `NHITS`, `TiDE`, `DeepNPTS`, `TSMixer`, `MLPMultivariate`, `DLinear`, `NLinear`, `TFT`, `Informer`, `AutoFormer`, `FedFormer`, `PatchTST`, `iTransformer`, `StemGNN`, and `TimeLLM`. See the entire [collection here](https://nixtla.github.io/neuralforecast/models.html).
* Fast and accurate implementations of `MLP`, `LSTM`, `GRU`, `RNN`, `TCN`, `TimesNet`, `BiTCN`, `DeepAR`, `NBEATS`, `NBEATSx`, `NHITS`, `TiDE`, `DeepNPTS`, `TSMixer`, `TSMixerx`, `MLPMultivariate`, `DLinear`, `NLinear`, `TFT`, `Informer`, `AutoFormer`, `FedFormer`, `PatchTST`, `iTransformer`, `StemGNN`, and `TimeLLM`. See the entire [collection here](https://nixtla.github.io/neuralforecast/models.html).
* Support for exogenous variables and static covariates.
* Interpretability methods for trend, seasonality and exogenous components.
* Probabilistic Forecasting with adapters for quantile losses and parametric distributions.
Expand Down Expand Up @@ -114,17 +114,17 @@ The [documentation page](https://nixtla.github.io/neuralforecast/) contains all
|[NHITS](https://nixtlaverse.nixtla.io/neuralforecast/models.nhits.html)| MLP | windows |||||
|[TiDE](https://nixtlaverse.nixtla.io/neuralforecast/models.tide.html)| MLP | windows |||||
|[DeepNPTS](https://nixtlaverse.nixtla.io/neuralforecast/models.deepnpts.html)| MLP | windows |||||
|[TSMixer](https://nixtlaverse.nixtla.io/neuralforecast/models.tsmixer.html)| MLP | multivariate |||||
|[TSMixerx](https://nixtlaverse.nixtla.io/neuralforecast/models.tsmixerx.html)| MLP | multivariate |||||
|[MLPMultivariate](https://nixtlaverse.nixtla.io/neuralforecast/models.mlpmultivariate.html)| MLP | multivariate |||||
|[TSMixer](https://nixtlaverse.nixtla.io/neuralforecast/models.tsmixer.html)| MLP | multivariate |||||
|[TSMixerx](https://nixtlaverse.nixtla.io/neuralforecast/models.tsmixerx.html)| MLP | multivariate |||||
|[MLPMultivariate](https://nixtlaverse.nixtla.io/neuralforecast/models.mlpmultivariate.html)| MLP | multivariate |||||
|[TFT](https://nixtlaverse.nixtla.io/neuralforecast/models.tft.html)| Transformer | windows |||||
|[Transformer](https://nixtlaverse.nixtla.io/neuralforecast/models.vanillatransformer.html)| Transformer | windows |||||
|[Informer](https://nixtlaverse.nixtla.io/neuralforecast/models.informer.html)| Transformer | windows |||||
|[Autoformer](https://nixtlaverse.nixtla.io/neuralforecast/models.autoformer.html)| Transformer | windows |||||
|[FEDFormer](https://nixtlaverse.nixtla.io/neuralforecast/models.fedformer.html)| Transformer | windows |||||
|[PatchTST](https://nixtlaverse.nixtla.io/neuralforecast/models.patchtst.html)| Transformer | windows |||||
|[Time-LLM](https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html)| Transformer | windows |||||
|[iTransformer](https://nixtlaverse.nixtla.io/neuralforecast/models.itransformer.html)| Transformer | multivariate |||||
|[iTransformer](https://nixtlaverse.nixtla.io/neuralforecast/models.itransformer.html)| Transformer | multivariate |||||
|[StemGNN](https://nixtlaverse.nixtla.io/neuralforecast/models.stemgnn.html)| GNN | multivariate |||||

Missing a model? Please open an issue or write us in [![Slack](https://img.shields.io/badge/Slack-4A154B?&logo=slack&logoColor=white)](https://join.slack.com/t/nixtlaworkspace/shared_invite/zt-135dssye9-fWTzMpv2WBthq8NK0Yvu6A)
Expand Down

0 comments on commit 5516c29

Please sign in to comment.