Skip to content

Commit

Permalink
clean_up_eval
Browse files Browse the repository at this point in the history
  • Loading branch information
elephaint committed Feb 3, 2025
1 parent 512e071 commit eddf9b3
Show file tree
Hide file tree
Showing 4 changed files with 0 additions and 45 deletions.
19 changes: 0 additions & 19 deletions action_files/test_models/src/models.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,17 @@
import os
import time

import fire
# import numpy as np
import pandas as pd
# import pytorch_lightning as pl
# import torch

# import neuralforecast
from neuralforecast.core import NeuralForecast

# from neuralforecast.models.gru import GRU
from neuralforecast.models.rnn import RNN
from neuralforecast.models.tcn import TCN
# from neuralforecast.models.lstm import LSTM
# from neuralforecast.models.dilated_rnn import DilatedRNN
from neuralforecast.models.deepar import DeepAR
# from neuralforecast.models.mlp import MLP
from neuralforecast.models.nhits import NHITS
from neuralforecast.models.nbeats import NBEATS
# from neuralforecast.models.nbeatsx import NBEATSx
from neuralforecast.models.tft import TFT
from neuralforecast.models.vanillatransformer import VanillaTransformer
# from neuralforecast.models.informer import Informer
# from neuralforecast.models.autoformer import Autoformer
# from neuralforecast.models.patchtst import PatchTST
from neuralforecast.models.dlinear import DLinear
from neuralforecast.models.bitcn import BiTCN
from neuralforecast.models.tide import TiDE
Expand All @@ -33,20 +20,14 @@

from neuralforecast.auto import (
AutoMLP,
# AutoNHITS,
# AutoNBEATS,
AutoDilatedRNN,
# AutoTFT
)

from neuralforecast.losses.pytorch import SMAPE, MAE, IQLoss
from ray import tune

from src.data import get_data

os.environ['NIXTLA_ID_AS_COL'] = '1'


def main(dataset: str = 'M3', group: str = 'Monthly') -> None:
train, horizon, freq, seasonality = get_data('data/', dataset, group)
train['ds'] = pd.to_datetime(train['ds'])
Expand Down
23 changes: 0 additions & 23 deletions action_files/test_models/src/models2.py
Original file line number Diff line number Diff line change
@@ -1,47 +1,25 @@
import os
import time

import fire
# import numpy as np
import pandas as pd
# import pytorch_lightning as pl
# import torch

# import neuralforecast
from neuralforecast.core import NeuralForecast

from neuralforecast.models.gru import GRU
# from neuralforecast.models.rnn import RNN
# from neuralforecast.models.tcn import TCN
from neuralforecast.models.lstm import LSTM
from neuralforecast.models.dilated_rnn import DilatedRNN
# from neuralforecast.models.deepar import DeepAR
# from neuralforecast.models.mlp import MLP
# from neuralforecast.models.nhits import NHITS
# from neuralforecast.models.nbeats import NBEATS
from neuralforecast.models.nbeatsx import NBEATSx
# from neuralforecast.models.tft import TFT
# from neuralforecast.models.vanillatransformer import VanillaTransformer
# from neuralforecast.models.informer import Informer
# from neuralforecast.models.autoformer import Autoformer
# from neuralforecast.models.patchtst import PatchTST

from neuralforecast.auto import (
# AutoMLP,
AutoNHITS,
AutoNBEATS,
# AutoDilatedRNN,
# AutoTFT
)

from neuralforecast.losses.pytorch import MAE
from ray import tune

from src.data import get_data

os.environ['NIXTLA_ID_AS_COL'] = '1'


def main(dataset: str = 'M3', group: str = 'Monthly') -> None:
train, horizon, freq, seasonality = get_data('data/', dataset, group)
train['ds'] = pd.to_datetime(train['ds'])
Expand All @@ -60,7 +38,6 @@ def main(dataset: str = 'M3', group: str = 'Monthly') -> None:
AutoNBEATS(h=horizon, loss=MAE(), config=config_nbeats, num_samples=2, cpus=1),
AutoNHITS(h=horizon, loss=MAE(), config=config_nbeats, num_samples=2, cpus=1),
NBEATSx(h=horizon, input_size=2 * horizon, loss=MAE(), max_steps=1000),
# PatchTST(h=horizon, input_size=2 * horizon, patch_len=4, stride=4, loss=MAE(), scaler_type='minmax1', windows_batch_size=512, max_steps=1000, val_check_steps=500),
]

# Models
Expand Down
1 change: 0 additions & 1 deletion action_files/test_models/src/multivariate_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,5 @@ def evaluate(model: str, dataset: str, group: str):
df_evaluation.columns = ['dataset', 'model', 'metric', 'val']
df_evaluation = df_evaluation.set_index(['dataset', 'metric', 'model']).unstack().round(3)
df_evaluation = df_evaluation.droplevel(0, 1).reset_index()
# df_evaluation['AutoARIMA'] = [666.82, 15.35, 3.000]
df_evaluation.to_csv('data/evaluation.csv')
print(df_evaluation.T)
2 changes: 0 additions & 2 deletions action_files/test_models/src/multivariate_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
from neuralforecast.models.tsmixer import TSMixer
from neuralforecast.models.tsmixerx import TSMixerx
from neuralforecast.models.itransformer import iTransformer
# # from neuralforecast.models.stemgnn import StemGNN
from neuralforecast.models.mlpmultivariate import MLPMultivariate
from neuralforecast.models.timemixer import TimeMixer

Expand All @@ -30,7 +29,6 @@ def main(dataset: str = 'multivariate', group: str = 'ETTm2') -> None:
TSMixer(h=horizon, n_series=7, input_size=2 * horizon, loss=MAE(), dropout=0.0, max_steps=1000, val_check_steps=100, windows_batch_size=64, inference_windows_batch_size=64),
TSMixerx(h=horizon, n_series=7, input_size=2*horizon, loss=MAE(), dropout=0.0, max_steps=1000, val_check_steps=100, windows_batch_size=64, inference_windows_batch_size=64),
iTransformer(h=horizon, n_series=7, input_size=2 * horizon, loss=MAE(), dropout=0.0, max_steps=500, val_check_steps=100, windows_batch_size=64, inference_windows_batch_size=64),
# StemGNN(h=horizon, n_series=7, input_size=2*horizon, loss=MAE(), dropout_rate=0.0, max_steps=1000, val_check_steps=500, windows_batch_size=64, inference_windows_batch_size=64),
MLPMultivariate(h=horizon, n_series=7, input_size=2*horizon, loss=MAE(), max_steps=1000, val_check_steps=100, windows_batch_size=64, inference_windows_batch_size=64),
TimeMixer(h=horizon, n_series=7, input_size=2*horizon, loss=MAE(), dropout=0.0, max_steps=500, val_check_steps=100, windows_batch_size=64, inference_windows_batch_size=64)
]
Expand Down

0 comments on commit eddf9b3

Please sign in to comment.