Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEAT] - Tutorials update (Marco) #311

Merged
merged 8 commits into from
Apr 29, 2024
Merged

Conversation

marcopeix
Copy link
Contributor

@marcopeix marcopeix commented Apr 25, 2024

Better structure and overall improvements to explanations in the following tutorials:

  • long-horizon forecasting
  • multiple series
  • cross-validation
  • anomaly detection

Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 3.6241 3.4814 0.009 0.0049

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 3.776 4.2471 0.0056 0.0048

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 142.394 196.363 269.23 1331.02
mape 0.0203 0.0234 0.0304 0.1692
mse 63464.8 123119 213677 4.68961e+06
total_time 7.6742 8.5303 0.008 0.0069

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 522.427 353.528 398.956 1119.26
mape 0.069 0.0454 0.0512 0.1583
mse 966294 422332 656723 3.17316e+06
total_time 11.2585 11.2731 0.0078 0.0071

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 478.362 361.033 602.926 1340.95
mape 0.0622 0.046 0.0787 0.17
mse 805039 441118 1.61572e+06 6.04619e+06
total_time 9.2449 10.634 0.0076 0.0074

Plot:

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.935 199.132 2571.33 10604.2
total_time 3.6759 3.4032 0.0081 0.0046

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 5.3886 11.5487 0.0056 0.0047

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 142.394 196.363 269.23 1331.02
mape 0.0203 0.0234 0.0304 0.1692
mse 63464.7 123119 213677 4.68961e+06
total_time 10.2106 8.7708 0.0076 0.0077

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 522.427 353.528 398.956 1119.26
mape 0.069 0.0454 0.0512 0.1583
mse 966294 422332 656723 3.17316e+06
total_time 9.5523 10.154 0.0075 0.007

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 478.362 361.033 602.926 1340.95
mape 0.0622 0.046 0.0787 0.17
mse 805039 441118 1.61572e+06 6.04619e+06
total_time 10.9106 9.2891 0.0075 0.0069

Plot:

Copy link
Member

@mergenthaler mergenthaler left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks!

@mergenthaler
Copy link
Member

@AzulGarza: I think this is ready for your review.

@AzulGarza AzulGarza marked this pull request as ready for review April 29, 2024 19:43
Copy link
Member

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

awesome! lgtm🥰

@AzulGarza AzulGarza merged commit 8fee338 into main Apr 29, 2024
14 checks passed
@AzulGarza AzulGarza deleted the feature/tutorials-update-marco branch April 29, 2024 19:46
MMenchero pushed a commit that referenced this pull request Apr 29, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants