Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DOC] - Add links and callouts #355

Merged
merged 3 commits into from
May 16, 2024
Merged

[DOC] - Add links and callouts #355

merged 3 commits into from
May 16, 2024

Conversation

marcopeix
Copy link
Contributor

Add links in page "About TimeGPT"
Add links in sections of capabilities. The links go to the notebooks in capabilities.
Add callouts for TimeGPT on Azure in all capabilities notebooks and tutorial 01 to 08.

Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.7844 4.2574 0.008 0.0045

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 2.4971 2.1842 0.0052 0.0046

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 196.363 269.23 1331.02
mape 0.0234 0.0234 0.0304 0.1692
mse 121588 123119 213677 4.68961e+06
total_time 1.9209 3.5239 0.0075 0.0064

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 353.528 398.956 1119.26
mape 0.062 0.0454 0.0512 0.1583
mse 835120 422332 656723 3.17316e+06
total_time 3.9713 2.558 0.0071 0.0065

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 361.033 602.926 1340.95
mape 0.0697 0.046 0.0787 0.17
mse 1.22721e+06 441118 1.61572e+06 6.04619e+06
total_time 4.1055 2.4983 0.007 0.0067

Plot:

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.935 199.132 2571.33 10604.2
total_time 2.4419 1.9871 0.0081 0.0042

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.22 4110.79 5928.17 18859.2
total_time 3.8599 4.5664 0.0054 0.0044

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 196.363 269.23 1331.02
mape 0.0234 0.0234 0.0304 0.1692
mse 121588 123119 213677 4.68961e+06
total_time 2.2115 2.6671 0.0074 0.0065

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 353.528 398.956 1119.26
mape 0.062 0.0454 0.0512 0.1583
mse 835120 422332 656723 3.17316e+06
total_time 10.1462 5.1483 0.0069 0.0063

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 361.033 602.926 1340.95
mape 0.0697 0.046 0.0787 0.17
mse 1.22721e+06 441118 1.61572e+06 6.04619e+06
total_time 6.9116 5.2897 0.007 0.0065

Plot:

@marcopeix marcopeix marked this pull request as ready for review May 14, 2024 19:16
Copy link
Member

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks @marcopeix! i deployed the readme dot com version from this branch.

could we fix the following?

  1. the lists of the sections rendered this way:
image

i think we can use multiple breaklines as in the previous docs:


* [Simple anomaly detection](https://docs.nixtla.io/docs/capabilities-anomaly-detection-quickstart)

* [Anomaly detection with exogenous features](https://docs.nixtla.io/docs/capabilities-anomaly-detection-add_exogenous_variables)

...
  1. also, when instantiating the NixtlaClass, we have the following:
image

i think this one can be solved also adding ticks:

 `nixtla_client = NixtlaClient(`
 `    base_url="you azure ai endpoint",`
 `   api_key="your api_key",`
`)`

the last one looks pretty cool!

image

@AzulGarza
Copy link
Member

hey @marcopeix! just reviewed #357, and saw that @elephaint used the readme dot com callout style, and i think it looks very cool, wdyt if we use that? please see #357 (review).

image

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 1.83 3.3279 0.0085 0.0046

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 1.9654 1.9466 0.0055 0.0046

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 3.255 2.1337 0.0072 0.0065

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 3.7982 3.9673 0.0073 0.0068

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 7.3833 3.4668 0.0072 0.0067

Plot:

@marcopeix
Copy link
Contributor Author

Fixed layout issues and used the readme.com style for callouts

@marcopeix marcopeix requested a review from AzulGarza May 15, 2024 18:52
Copy link
Member

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thank you @marcopeix! lgtm

@AzulGarza AzulGarza merged commit 2895af8 into main May 16, 2024
16 checks passed
@AzulGarza AzulGarza deleted the hotfix/docu-marco branch May 16, 2024 03:05
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants