Skip to content

fix: convert level to quantiles in historic forecast #510

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions nbs/src/nixtla_client.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1161,7 +1161,6 @@
" )\n",
" out = ufp.assign_columns(out, 'TimeGPT', resp['mean'])\n",
" out = _maybe_add_intervals(out, resp['intervals'])\n",
" out = _maybe_convert_level_to_quantiles(out, quantiles)\n",
" if add_history:\n",
" in_sample_df = _parse_in_sample_output(\n",
" in_sample_output=in_sample_resp,\n",
Expand All @@ -1173,6 +1172,7 @@
" )\n",
" in_sample_df = ufp.drop_columns(in_sample_df, target_col)\n",
" out = ufp.vertical_concat([in_sample_df, out])\n",
" out = _maybe_convert_level_to_quantiles(out, quantiles)\n",
" self._maybe_assign_feature_contributions(\n",
" expected_contributions=feature_contributions,\n",
" resp=resp,\n",
Expand All @@ -1184,8 +1184,10 @@
" sort_idxs = ufp.maybe_compute_sort_indices(out, id_col=id_col, time_col=time_col)\n",
" if sort_idxs is not None:\n",
" out = ufp.take_rows(out, sort_idxs)\n",
" out = ufp.drop_index_if_pandas(out)\n",
" if hasattr(self, 'feature_contributions'):\n",
" self.feature_contributions = ufp.take_rows(self.feature_contributions, sort_idxs)\n",
" self.feature_contributions = ufp.drop_index_if_pandas(self.feature_contributions)\n",
" out = _maybe_drop_id(df=out, id_col=id_col, drop=drop_id)\n",
" self._maybe_assign_weights(weights=resp['weights_x'], df=df, x_cols=x_cols)\n",
" return out\n",
Expand Down Expand Up @@ -1833,8 +1835,10 @@
" **kwargs\n",
" )\n",
" assert all(col in df_qls.columns for col in exp_q_cols)\n",
" assert not any('-lo-' in col for col in df_qls.columns)\n",
" # test monotonicity of quantiles\n",
" df_qls.apply(lambda x: x.is_monotonic_increasing, axis=1).sum() == len(exp_q_cols)\n",
" for c1, c2 in zip(exp_q_cols[:-1], exp_q_cols[1:]):\n",
" assert df_qls[c1].lt(df_qls[c2]).all()\n",
"test_method_qls(nixtla_client.forecast)\n",
"test_method_qls(nixtla_client.forecast, add_history=True)\n",
"test_method_qls(nixtla_client.cross_validation)"
Expand Down Expand Up @@ -2394,8 +2398,8 @@
"anom_inferred_df_index = nixtla_client.detect_anomalies(df_ds_index)\n",
"fcst_inferred_df = nixtla_client.forecast(df_[['ds', 'unique_id', 'y']], h=10)\n",
"anom_inferred_df = nixtla_client.detect_anomalies(df_[['ds', 'unique_id', 'y']])\n",
"pd.testing.assert_frame_equal(fcst_inferred_df_index, fcst_inferred_df, atol=1e-3)\n",
"pd.testing.assert_frame_equal(anom_inferred_df_index, anom_inferred_df, atol=1e-3)\n",
"pd.testing.assert_frame_equal(fcst_inferred_df_index, fcst_inferred_df, atol=1e-4, rtol=1e-3)\n",
"pd.testing.assert_frame_equal(anom_inferred_df_index, anom_inferred_df, atol=1e-4, rtol=1e-3)\n",
"df_ds_index = df_ds_index.groupby('unique_id').tail(80)\n",
"for freq in ['Y', 'W-MON', 'Q-DEC', 'H']:\n",
" df_ds_index.index = np.concatenate(\n",
Expand All @@ -2405,7 +2409,7 @@
" fcst_inferred_df_index = nixtla_client.forecast(df_ds_index, h=10)\n",
" df_test = df_ds_index.reset_index()\n",
" fcst_inferred_df = nixtla_client.forecast(df_test, h=10)\n",
" pd.testing.assert_frame_equal(fcst_inferred_df_index, fcst_inferred_df, atol=1e-3)"
" pd.testing.assert_frame_equal(fcst_inferred_df_index, fcst_inferred_df, atol=1e-4, rtol=1e-3)"
]
},
{
Expand Down Expand Up @@ -2547,7 +2551,9 @@
"\n",
"pd.testing.assert_frame_equal(\n",
" timegpt_anomalies_df_1,\n",
" timegpt_anomalies_df_2 \n",
" timegpt_anomalies_df_2,\n",
" atol=1e-4,\n",
" rtol=1e-3,\n",
")"
]
},
Expand Down
6 changes: 5 additions & 1 deletion nixtla/nixtla_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -1093,7 +1093,6 @@ def forecast(
)
out = ufp.assign_columns(out, "TimeGPT", resp["mean"])
out = _maybe_add_intervals(out, resp["intervals"])
out = _maybe_convert_level_to_quantiles(out, quantiles)
if add_history:
in_sample_df = _parse_in_sample_output(
in_sample_output=in_sample_resp,
Expand All @@ -1105,6 +1104,7 @@ def forecast(
)
in_sample_df = ufp.drop_columns(in_sample_df, target_col)
out = ufp.vertical_concat([in_sample_df, out])
out = _maybe_convert_level_to_quantiles(out, quantiles)
self._maybe_assign_feature_contributions(
expected_contributions=feature_contributions,
resp=resp,
Expand All @@ -1118,10 +1118,14 @@ def forecast(
)
if sort_idxs is not None:
out = ufp.take_rows(out, sort_idxs)
out = ufp.drop_index_if_pandas(out)
if hasattr(self, "feature_contributions"):
self.feature_contributions = ufp.take_rows(
self.feature_contributions, sort_idxs
)
self.feature_contributions = ufp.drop_index_if_pandas(
self.feature_contributions
)
out = _maybe_drop_id(df=out, id_col=id_col, drop=drop_id)
self._maybe_assign_weights(weights=resp["weights_x"], df=df, x_cols=x_cols)
return out
Expand Down