[trainer] add more robust generation output validation#132
[trainer] add more robust generation output validation#132erictang000 merged 7 commits intoNovaSky-AI:mainfrom
Conversation
There was a problem hiding this comment.
Summary of Changes
Hello @erictang000, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!
This pull request significantly improves the data integrity of the generation process within the trainer by introducing a dedicated, robust validation utility. This change centralizes output checks, ensuring that the structure and content of generated data adhere to expected formats before further processing, thereby preventing potential issues downstream in the training pipeline.
Highlights
- Enhanced Output Validation: A new
validate_generator_outputfunction has been introduced inskyrl_train/utils/trainer_utils.pyto provide comprehensive and robust validation of theGeneratorOutputstructure and its contents. - Centralized Validation Logic: The
trainer.pyfile has been updated to replace its ad-hoc validation checks with a single, centralized call to the newvalidate_generator_outputfunction, streamlining the generation process and improving code maintainability. - Robust Data Integrity Checks: The new validation function ensures that all batch-level list attributes (e.g.,
prompt_token_ids,response_ids,rewards,loss_masks) have consistent lengths, thatresponse_idsare not empty, and that token-level attributes within each generated sequence are also consistently sized. It also logs a warning if allloss_masksare zero, which could indicate a potential issue leading to NaN loss. - Comprehensive Test Coverage: Extensive unit tests have been added to
tests/cpu/test_trainer_utils.pyto cover various valid and invalid scenarios for thevalidate_generator_outputfunction, ensuring its reliability and correctness under different conditions.
Using Gemini Code Assist
The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.
Invoking Gemini
You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.
| Feature | Command | Description |
|---|---|---|
| Code Review | /gemini review |
Performs a code review for the current pull request in its current state. |
| Pull Request Summary | /gemini summary |
Provides a summary of the current pull request in its current state. |
| Comment | @gemini-code-assist | Responds in comments when explicitly tagged, both in issue comments and review comments. |
| Help | /gemini help |
Displays a list of available commands. |
Customization
To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.
Limitations & Feedback
Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments or fill out our survey to provide feedback.
You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.
Footnotes
-
Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution. ↩
There was a problem hiding this comment.
Code Review
This pull request introduces a new validate_generator_output function to centralize and enhance the validation of generator outputs, which is a great improvement for code clarity and robustness. The associated unit tests are comprehensive and cover various edge cases.
My review focuses on the implementation of validate_generator_output in skyrl_train/skyrl_train/utils/trainer_utils.py. I've identified a potential ValueError due to the order of checks and have suggested reordering them. Additionally, I've provided suggestions to improve the clarity of assertion messages, which will make debugging easier.
Overall, this is a solid contribution that improves data integrity within the trainer.
|
/gemini review |
There was a problem hiding this comment.
Code Review
This pull request introduces a new validate_generator_output function to centralize and enhance the validation of generator outputs. The new function includes more comprehensive checks for length consistency across different attributes of the GeneratorOutput and within individual samples. The validation logic in the Trainer.generate method has been refactored to use this new utility function. Additionally, a thorough set of unit tests has been added to verify the correctness of the new validation logic under various conditions. The changes improve code robustness and maintainability. My review includes a suggestion to refactor a loop to be more idiomatic and readable.
Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com>
* [Trainer] Support per-token rewards in trainer (NovaSky-AI#109) * Add check for whether p2p access is supported - allows code to run on L4/L40S after NovaSky-AI#73 upgrade to cuda 12.8 (NovaSky-AI#108) # Overview After NovaSky-AI#73, the main code path no longer runs on GPUs without P2P support (potentially due to cuda 12.8 upgrade?) - an error would be thrown like ```bash torch.distributed.DistBackendError: NCCL error in: /pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:3353, unhandled cuda error (run with NCCL_DEBUG=INFO for details), NCCL version 2.26.2 ncclUnhandledCudaError: Call to CUDA function failed. Last error: Cuda failure 217 'peer access is not supported between these two devices' ``` This PR adds a check for whether peer access is supported (using torch/cuda) between all GPUs on a node to the ray initialization, and sets relevant NCCL env vars to allow the code to run on these machine types. ```python if not peer_access_supported(): logger.info("Peer access is not supported, disabling P2P and SHM") env_vars["NCCL_P2P_DISABLE"] = "1" env_vars["NCCL_SHM_DISABLE"] = "1" ``` Example running on L40S: <img width="1854" height="227" alt="image" src="https://github.com/user-attachments/assets/1cca46b5-6e16-4ae7-9a33-df52d138bdeb" /> * [dependencies] Upgrade ray to 2.48.0 (NovaSky-AI#106) # What does this PR do Upgrades ray to 2.48.0, which allows us to remove the pip install vllm in the Dockerfile as a fallback for when uv + vllm does not resolve dependencies with the vllm + ray backend correctly. We leave the previous Dockerfile in `docker/Dockerfile.ray244` for backwards compatibility --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * fix issue with NovaSky-AI#108 that broke gpu ci (NovaSky-AI#112) missed an argument in `gpu_ci/conftest.py` for `peer_access_supported()` - fix for gpu ci to run Passing now with update: <img width="1811" height="861" alt="image" src="https://github.com/user-attachments/assets/70011c54-1e33-44b5-83a0-616029f891d2" /> And main runs (and disables p2p access) correctly: <img width="2067" height="203" alt="image" src="https://github.com/user-attachments/assets/399aff67-cc51-4588-a632-47698073593c" /> * Add warning for certain uv versions due to `uv run --with` regression (NovaSky-AI#113) # What does this PR do? Adds a warning for uv versions 0.8.0, 0.8.1 and 0.8.2 due to a bug in the uv run --with flag for "Running in ray cluster" section. These are relatively new versions and thus it's better to have this detail in the documentation for users. <img width="692" height="458" alt="Screenshot 2025-07-25 at 6 09 15 PM" src="https://github.com/user-attachments/assets/f1997eac-2867-4552-8ef7-eea8741e32b6" /> <img width="779" height="568" alt="Screenshot 2025-07-25 at 6 09 19 PM" src="https://github.com/user-attachments/assets/5080d328-c934-4864-91a8-932902dea934" /> --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> * [GPU CI] Only trigger workflow for relevant changes in `skyrl-train` (NovaSky-AI#114) * [bug] Loading saved HF weights errors (NovaSky-AI#118) Addresses NovaSky-AI#97 * [DAPO] Add support for overlong filtering (NovaSky-AI#111) ## What does this PR do? Adds `apply_overlong_filtering` to the generator config, and provides a generator utility method `apply_overlong_filtering()` for post-processing the loss mask. I originally implemented this using the `stop_reasons` to determine whether the sequence was truncated, but instead switched to looking for `eos_token` in the response IDs for a more general approach. ## Tests Added CPU tests for the utility method and for SkyRL Gym Generator's use of the utility method. * [skyrl-gym] GSM8k - LLM Judge example (NovaSky-AI#74) * Fix MLFlow logging (NovaSky-AI#121) This is a small change to make the MLFlow integration work. Currently this fails with a Pandas error when trying to flatten an Omega dict; we need to convert to a regular Python dictionary. Can confirm this works on our MLFlow setup: <img width="1406" height="683" alt="image" src="https://github.com/user-attachments/assets/fcee526a-815e-4f08-bf25-d2709779ced7" /> * [Trainer] Support registering custom advantage estimators (NovaSky-AI#115) ## What does this PR do? Adds an `AdvantageEstimatorRegistry` to support custom advantage estimation methods without modifying the skyrl-train package. Added `examples/algorithm/custom_advantage_estimator` folder to give quick example of how to register a custom adv est function. ## Tests Adding cpu test to ensure registration works. * [checkpointing] Add HF model config and tokenizer config to checkpoint folder (NovaSky-AI#124) # Overview Adds the HF model config and tokenizer config to `ckpt_path/huggingface` for deepspeed and fsdp. So now the checkpoint directory will be: ``` {ckpt_path}/ ├── latest_ckpt_global_step.txt # Holds the global step of the latest checkpoint ├── global_step_10/ # Checkpoint at training step 10 │ ├── policy/ # Policy model checkpoint directory │ │ ├── fsdp_config.json # stores fsdp version and world size │ │ ├── huggingface/ │ │ ├── config.json # model config │ │ ├── tokenizer_config.json # tokenizer config │ │ ├── generation_config.json # generation config │ │ ├── ... # other tokenizer config files │ │ ├── model_state.pt # Model parameters │ │ ├── optimizer_state.pt # Optimizer state │ │ └── lr_scheduler_state.pt # Learning rate scheduler state ``` For deepspeed it will be similar but without `fsdp_config.json` ``` {ckpt_path}/ ├── latest_ckpt_global_step.txt # Holds the global step of the latest checkpoint ├── global_step_10/ # Checkpoint at training step 10 │ ├── policy/ # Policy model checkpoint directory │ │ ├── huggingface/ │ │ ├── config.json # model config │ │ ├── tokenizer_config.json # tokenizer config │ │ ├── generation_config.json # generation config │ │ ├── ... # other tokenizer config files │ │ ├── ... # deepspeed checkpointing files ``` * Fix discord link (NovaSky-AI#125) * Fix broken link (NovaSky-AI#128) * [Trainer/Algorithm] Support registering custom policy loss functions + refactor adv estimator registry to allow registration outside ray workers (NovaSky-AI#126) # Overview - Adds support for registering custom policy loss functions, similar to NovaSky-AI#115, - Refactors the policy loss to be a function in `ppo_utils.py` instead of a (`nn.Module` in `worker.py`) - Introduces a breaking change in renaming `trainer.algorithm.ppo_loss_type` to `trainer.algorithm.policy_loss_type` - Addresses Issue NovaSky-AI#116 by creating a new `BaseFunctionRegistry` class that uses a [named actor](https://docs.ray.io/en/latest/ray-core/actors/named-actors.html) to support the following pattern: ```python # Example of custom policy loss: "simple_baseline" def compute_simple_baseline_policy_loss( log_probs: torch.Tensor, ... ): return torch.randn(1, device=log_probs.device), 0.0 # Register the custom policy loss - outside of the ray worker PolicyLossRegistry.register("simple_baseline", compute_simple_baseline_policy_loss) @ray.remote(num_cpus=1) def skyrl_entrypoint(cfg: DictConfig): exp = BasePPOExp(cfg) exp.run() @hydra.main(config_path=config_dir, config_name="ppo_base_config", version_base=None) def main(cfg: DictConfig) -> None: # validate the arguments validate_cfg(cfg) initialize_ray(cfg) ray.get(skyrl_entrypoint.remote(cfg)) ``` this change was necessary for `PolicyLossRegistry` to be accessible, since the worker `actor_loss_fn` attribute is set in `init_model` within the `worker` actor, which is a ray actor created from within the skyrl_entrypoint ray task (and registering within the entrypoint wouldn't propagate down another layer). - updates AdvantageEstimatorRegistry to extend the same `BaseFunctionRegistry` class Example runs: Custom advantage (mean of reward) <img width="956" height="326" alt="image" src="https://github.com/user-attachments/assets/1b7222bc-fbb9-49b1-876d-265b71201087" /> Custom policy loss (reinforce - just (-logprobs * advantages).mean()) <img width="939" height="330" alt="image" src="https://github.com/user-attachments/assets/cbed7ef5-b3e7-4e32-beba-b52b80879f47" /> * [SkyAgent] Upload initial refactored code (NovaSky-AI#131) # What does this PR do? Uploading our initial refactored code for SkyAgent --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> Co-authored-by: Shiyi Cao <shicao@berkeley.edu> Co-authored-by: Dacheng Li <dacheng177@berkeley.edu> * [trainer] add more robust generation output validation (NovaSky-AI#132) # Overview Adds a `validate_generation_output` function in `trainer_utils.py` with more robust validation of generation output format. Specifically, given ``` class GeneratorOutput(TypedDict): prompt_token_ids: List[List[int]] response_ids: List[List[int]] rewards: Union[List[float], List[List[float]]] loss_masks: List[List[int]] stop_reasons: Optional[List[str]] rollout_metrics: Optional[Dict[str, Any]] ``` We expect - all list attributes should have the same length and be the same length as the input batch of prompts at dim=0 - non zero length lists - response_ids, loss masks, and rewards (if token level rewards) should be the same length - the sum of loss masks should be non-zero (logging a warning if it is not) verified gsm8k run still works: <img width="563" height="330" alt="image" src="https://github.com/user-attachments/assets/eeefebcb-d5fc-486d-b906-f4344b1e2779" /> --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * [Trainer] GSPO support (NovaSky-AI#120) This PR adds support for [Group Sequence Policy Optimization (GSPO)](https://arxiv.org/abs/2507.18071), the hotness du jour from Alibaba Qwen. The implementation in this PR is loosely based on [this one](huggingface/trl#3775) from TRL. It adds an `importance_sampling_level` config option which can be `token` (PPO/GRPO) or `sequence` (GSPO). I ran a short/small GSM8k run with Qwen2.5-0.5B and the loss curves look okay: <img width="314" height="240" alt="image" src="https://github.com/user-attachments/assets/f52d7c64-416c-4419-aa96-4a03c9048007" /> However, I had to hack a few things to get this to run on Datadog's cloud infra (including changing some dependency versions) so I'd encourage one of the maintainers to reproduce these results locally before merging. * [SkyAgent] Add initial docs (NovaSky-AI#134) # What does this PR do? Adds initial documentation for SkyAgent. We are still actively cleaning this package up, but I thought initial documentation will be helpful for anyone who stumbles across this. The documentation folder is still in `skyrl-train`, and much of the docs also refer to "SkyRL" when they are really referring to "SkyRL-train", so to avoid any confusion, I have just added this as a simple page on the sidebar. We need to make the docs be mono-repo wide and structure it better but I'm leaving it for a future PR. --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> * [trainer/algorithm] Implement DAPO and Polaris style dynamic sampling + add DAPO docs + example (NovaSky-AI#130) # Overview This PR introduces filter (DAPO) and replace (Polaris/WebSailor) style dynamic sampling strategies. The dynamic sampling strategy can be configured as below: ```yaml # dynamic sampling parameters dynamic_sampling: type: null # filter (DAPO), replace (POLARIS/WebSailor), or null max_sample_batches: 30 # sample at most this many batches before stopping, -1 to sample forever min_replace_ratio: 0.3 # minimum proportion of good samples with which to replace bad samples (for replace strategy only) ``` This PR also adds a docs page describing how to enable all DAPO features, and adds an example GSM8K script where all these features are used. ## Minor Changes Some minor changes to make this dynamic sampling implementation clean: - the utils `Timer` class now updates the dict instead of overwriting in order to correctly track generation time w/ dynamic sampling, which means we need to make sure to reset `all_timings` in any trainer - The use of `self.weights_manager` is a little tricky for the dynamic sampling - introduced the the `ConditionalWeightsManager` to make the added code in the training loop as clean as possible ## Example runs <img width="413" height="264" alt="image" src="https://github.com/user-attachments/assets/072f716a-3632-42bb-a5f7-5f9d6064bd93" /> Generation time for dapo style filtering increases as the training run goes on, while it is stable for polaris and the baseline. <img width="419" height="265" alt="image" src="https://github.com/user-attachments/assets/887df550-e4b9-4623-b578-b4809a9f403f" /> We can see that the training pass @ n metric is 1 for both polaris and dapo style filtering as expected. <img width="421" height="259" alt="image" src="https://github.com/user-attachments/assets/bb63af77-1fbb-4d89-9216-b028f1551ea7" /> For GSM8k + Qwen 1.5B, the sampling strategy (as well as the full DAPO run) results in minimal gains - need larger models/harder dataset to test more fully DAPO sampling Example Run: ```bash (skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.439 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.737 | INFO | skyrl_train.weights_manager:__enter__:76 - Started: 'sync_weights_to_inference_engines' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO | skyrl_train.weights_manager:__enter__:76 - Finished: 'sync_weights_to_inference_engines', time cost: 2.66s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO | skyrl_train.weights_manager:__enter__:80 - Started: 'offload_policy_model_to_cpu' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.842 | INFO | skyrl_train.weights_manager:__enter__:80 - Finished: 'offload_policy_model_to_cpu', time cost: 0.44s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.888 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:13 [executor_base.py:227] It took 0.243244 seconds to wake up tags ['weights']. [repeated 4x across cluster] (AsyncVLLMInferenceEngine pid=223854) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.040547 seconds to wake up tags ['kv_cache']. (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:16 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster] (AsyncVLLMInferenceEngine pid=223855) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.041721 seconds to wake up tags ['kv_cache']. (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.378 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.49s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 460 < 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 1, continue sampling... (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ================================================== (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 20.96s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.407 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.445 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.014 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.57s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 941 < 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 2, continue sampling... (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ================================================== (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.030 | INFO | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 17.62s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.033 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.074 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.380 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 16.31s (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:439 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:440 - Dynamic sampling: collected 1467 >= 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.397 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:443 - ================================================== (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [gpu_worker.py:98] Sleep mode freed 61.88 GiB memory, 4.98 GiB memory is still in use. [repeated 3x across cluster] (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [executor_base.py:211] It took 1.264572 seconds to fall asleep. [repeated 3x across cluster] ``` Polaris Style example run: ```bash (skyrl_entrypoint pid=306764) 2025-08-05 00:30:01.648 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:29:58 [executor_base.py:227] It took 0.240372 seconds to wake up tags ['weights']. [repeated 4x across cluster] (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.040980 seconds to wake up tags ['kv_cache']. (AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:30:00 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster] (AsyncVLLMInferenceEngine pid=308518) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.041175 seconds to wake up tags ['kv_cache']. (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.663 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 15.01s (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.679 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:316 - Replace sampling: 629 good UIDs out of 1024 total prompts (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:320 - ============= Dynamic sampling replace =========== (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:321 - Number of good prompts: 629 (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:322 - Number of bad prompts: 395 (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:352 - After replacement - Replaced 395 bad prompts (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:353 - ================================================== (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [gpu_worker.py:98] Sleep mode freed 62.14 GiB memory, 6.28 GiB memory is still in use. [repeated 3x across cluster] (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [executor_base.py:211] It took 1.331663 seconds to fall asleep. ``` ## Full DAPO example run From example script <img width="417" height="262" alt="image" src="https://github.com/user-attachments/assets/2592a06f-8b8a-4cf1-a29e-321bff819eb0" /> <img width="909" height="325" alt="image" src="https://github.com/user-attachments/assets/50922afd-1424-4183-9329-4f1f340287eb" /> --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * [algorithm] Support Dr. GRPO + refactor where policy/critic loss functions are set (NovaSky-AI#133) # Overview ## Dr GRPO Adds `loss_reduction`: `seq_mean_token_sum_norm ` option, and `grpo_norm_by_std` option to support Dr. GRPO So to run Dr. GRPO, set: ```yaml trainer: algorithm: grpo_norm_by_std: false loss_reduction: "seq_mean_token_sum_norm" ... ``` Example run: <img width="906" height="317" alt="image" src="https://github.com/user-attachments/assets/ce9db2ef-253e-45c8-adba-1ef8a270bbd9" /> Reward looks similar <img width="419" height="263" alt="image" src="https://github.com/user-attachments/assets/a4bc4d8c-f3c1-4bad-a497-0297dc30bc27" /> Magnitude of policy loss is lower as expected (since we are normalizing by a larger constant rather than taking the mean) ## Refactor where Critic/Policy Loss are set Changes ppo critic `ValueLoss` to just a function instead of a `nn.Module` for consistency with `policy_loss`, and adds new algorithm field to cfg that require evaluating field values in `utils::validate_cfg` (this runs before entrypoint code, allowing users to modify the cfg further by subclassing `BasePPOExp`) PPO example still running after this refactor: <img width="421" height="262" alt="image" src="https://github.com/user-attachments/assets/88985da3-1403-49c6-8cb5-f1434151fd9e" /> * [fix] move algorithm folder -> algorithms (NovaSky-AI#136) left the algorithm folder in NovaSky-AI#133, move it over * [Logging] Forward mlflow env vars to ray runtime env (NovaSky-AI#135) This PR forward the `MLFLOW_TRACKING_URI` and `MLFLOW_TRACKING_TOKEN` environment variable to the ray runtime env during its initialization. This will enable users to simply provide the above env vars at the driver and be able to use MLFlow for experiment tracking. * data folder * some stuff * updates --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> Co-authored-by: Eric Tang <46737979+erictang000@users.noreply.github.com> Co-authored-by: Tyler Griggs <131809874+tyler-griggs@users.noreply.github.com> Co-authored-by: Shu Liu <lshu@berkeley.edu> Co-authored-by: Ben Cohen <ben.cohen@datadoghq.com> Co-authored-by: Shiyi Cao <shicao@berkeley.edu> Co-authored-by: Dacheng Li <dacheng177@berkeley.edu> Co-authored-by: Etienne Brodu <etn@etnbrd.com>
* [Trainer] Support per-token rewards in trainer (NovaSky-AI#109) * Add check for whether p2p access is supported - allows code to run on L4/L40S after NovaSky-AI#73 upgrade to cuda 12.8 (NovaSky-AI#108) # Overview After NovaSky-AI#73, the main code path no longer runs on GPUs without P2P support (potentially due to cuda 12.8 upgrade?) - an error would be thrown like ```bash torch.distributed.DistBackendError: NCCL error in: /pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:3353, unhandled cuda error (run with NCCL_DEBUG=INFO for details), NCCL version 2.26.2 ncclUnhandledCudaError: Call to CUDA function failed. Last error: Cuda failure 217 'peer access is not supported between these two devices' ``` This PR adds a check for whether peer access is supported (using torch/cuda) between all GPUs on a node to the ray initialization, and sets relevant NCCL env vars to allow the code to run on these machine types. ```python if not peer_access_supported(): logger.info("Peer access is not supported, disabling P2P and SHM") env_vars["NCCL_P2P_DISABLE"] = "1" env_vars["NCCL_SHM_DISABLE"] = "1" ``` Example running on L40S: <img width="1854" height="227" alt="image" src="https://github.com/user-attachments/assets/1cca46b5-6e16-4ae7-9a33-df52d138bdeb" /> * [dependencies] Upgrade ray to 2.48.0 (NovaSky-AI#106) # What does this PR do Upgrades ray to 2.48.0, which allows us to remove the pip install vllm in the Dockerfile as a fallback for when uv + vllm does not resolve dependencies with the vllm + ray backend correctly. We leave the previous Dockerfile in `docker/Dockerfile.ray244` for backwards compatibility --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * fix issue with NovaSky-AI#108 that broke gpu ci (NovaSky-AI#112) missed an argument in `gpu_ci/conftest.py` for `peer_access_supported()` - fix for gpu ci to run Passing now with update: <img width="1811" height="861" alt="image" src="https://github.com/user-attachments/assets/70011c54-1e33-44b5-83a0-616029f891d2" /> And main runs (and disables p2p access) correctly: <img width="2067" height="203" alt="image" src="https://github.com/user-attachments/assets/399aff67-cc51-4588-a632-47698073593c" /> * Add warning for certain uv versions due to `uv run --with` regression (NovaSky-AI#113) # What does this PR do? Adds a warning for uv versions 0.8.0, 0.8.1 and 0.8.2 due to a bug in the uv run --with flag for "Running in ray cluster" section. These are relatively new versions and thus it's better to have this detail in the documentation for users. <img width="692" height="458" alt="Screenshot 2025-07-25 at 6 09 15 PM" src="https://github.com/user-attachments/assets/f1997eac-2867-4552-8ef7-eea8741e32b6" /> <img width="779" height="568" alt="Screenshot 2025-07-25 at 6 09 19 PM" src="https://github.com/user-attachments/assets/5080d328-c934-4864-91a8-932902dea934" /> --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> * [GPU CI] Only trigger workflow for relevant changes in `skyrl-train` (NovaSky-AI#114) * [bug] Loading saved HF weights errors (NovaSky-AI#118) Addresses NovaSky-AI#97 * [DAPO] Add support for overlong filtering (NovaSky-AI#111) ## What does this PR do? Adds `apply_overlong_filtering` to the generator config, and provides a generator utility method `apply_overlong_filtering()` for post-processing the loss mask. I originally implemented this using the `stop_reasons` to determine whether the sequence was truncated, but instead switched to looking for `eos_token` in the response IDs for a more general approach. ## Tests Added CPU tests for the utility method and for SkyRL Gym Generator's use of the utility method. * [skyrl-gym] GSM8k - LLM Judge example (NovaSky-AI#74) * Fix MLFlow logging (NovaSky-AI#121) This is a small change to make the MLFlow integration work. Currently this fails with a Pandas error when trying to flatten an Omega dict; we need to convert to a regular Python dictionary. Can confirm this works on our MLFlow setup: <img width="1406" height="683" alt="image" src="https://github.com/user-attachments/assets/fcee526a-815e-4f08-bf25-d2709779ced7" /> * [Trainer] Support registering custom advantage estimators (NovaSky-AI#115) ## What does this PR do? Adds an `AdvantageEstimatorRegistry` to support custom advantage estimation methods without modifying the skyrl-train package. Added `examples/algorithm/custom_advantage_estimator` folder to give quick example of how to register a custom adv est function. ## Tests Adding cpu test to ensure registration works. * [checkpointing] Add HF model config and tokenizer config to checkpoint folder (NovaSky-AI#124) # Overview Adds the HF model config and tokenizer config to `ckpt_path/huggingface` for deepspeed and fsdp. So now the checkpoint directory will be: ``` {ckpt_path}/ ├── latest_ckpt_global_step.txt # Holds the global step of the latest checkpoint ├── global_step_10/ # Checkpoint at training step 10 │ ├── policy/ # Policy model checkpoint directory │ │ ├── fsdp_config.json # stores fsdp version and world size │ │ ├── huggingface/ │ │ ├── config.json # model config │ │ ├── tokenizer_config.json # tokenizer config │ │ ├── generation_config.json # generation config │ │ ├── ... # other tokenizer config files │ │ ├── model_state.pt # Model parameters │ │ ├── optimizer_state.pt # Optimizer state │ │ └── lr_scheduler_state.pt # Learning rate scheduler state ``` For deepspeed it will be similar but without `fsdp_config.json` ``` {ckpt_path}/ ├── latest_ckpt_global_step.txt # Holds the global step of the latest checkpoint ├── global_step_10/ # Checkpoint at training step 10 │ ├── policy/ # Policy model checkpoint directory │ │ ├── huggingface/ │ │ ├── config.json # model config │ │ ├── tokenizer_config.json # tokenizer config │ │ ├── generation_config.json # generation config │ │ ├── ... # other tokenizer config files │ │ ├── ... # deepspeed checkpointing files ``` * Fix discord link (NovaSky-AI#125) * Fix broken link (NovaSky-AI#128) * [Trainer/Algorithm] Support registering custom policy loss functions + refactor adv estimator registry to allow registration outside ray workers (NovaSky-AI#126) # Overview - Adds support for registering custom policy loss functions, similar to NovaSky-AI#115, - Refactors the policy loss to be a function in `ppo_utils.py` instead of a (`nn.Module` in `worker.py`) - Introduces a breaking change in renaming `trainer.algorithm.ppo_loss_type` to `trainer.algorithm.policy_loss_type` - Addresses Issue NovaSky-AI#116 by creating a new `BaseFunctionRegistry` class that uses a [named actor](https://docs.ray.io/en/latest/ray-core/actors/named-actors.html) to support the following pattern: ```python # Example of custom policy loss: "simple_baseline" def compute_simple_baseline_policy_loss( log_probs: torch.Tensor, ... ): return torch.randn(1, device=log_probs.device), 0.0 # Register the custom policy loss - outside of the ray worker PolicyLossRegistry.register("simple_baseline", compute_simple_baseline_policy_loss) @ray.remote(num_cpus=1) def skyrl_entrypoint(cfg: DictConfig): exp = BasePPOExp(cfg) exp.run() @hydra.main(config_path=config_dir, config_name="ppo_base_config", version_base=None) def main(cfg: DictConfig) -> None: # validate the arguments validate_cfg(cfg) initialize_ray(cfg) ray.get(skyrl_entrypoint.remote(cfg)) ``` this change was necessary for `PolicyLossRegistry` to be accessible, since the worker `actor_loss_fn` attribute is set in `init_model` within the `worker` actor, which is a ray actor created from within the skyrl_entrypoint ray task (and registering within the entrypoint wouldn't propagate down another layer). - updates AdvantageEstimatorRegistry to extend the same `BaseFunctionRegistry` class Example runs: Custom advantage (mean of reward) <img width="956" height="326" alt="image" src="https://github.com/user-attachments/assets/1b7222bc-fbb9-49b1-876d-265b71201087" /> Custom policy loss (reinforce - just (-logprobs * advantages).mean()) <img width="939" height="330" alt="image" src="https://github.com/user-attachments/assets/cbed7ef5-b3e7-4e32-beba-b52b80879f47" /> * [SkyAgent] Upload initial refactored code (NovaSky-AI#131) # What does this PR do? Uploading our initial refactored code for SkyAgent --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> Co-authored-by: Shiyi Cao <shicao@berkeley.edu> Co-authored-by: Dacheng Li <dacheng177@berkeley.edu> * [trainer] add more robust generation output validation (NovaSky-AI#132) # Overview Adds a `validate_generation_output` function in `trainer_utils.py` with more robust validation of generation output format. Specifically, given ``` class GeneratorOutput(TypedDict): prompt_token_ids: List[List[int]] response_ids: List[List[int]] rewards: Union[List[float], List[List[float]]] loss_masks: List[List[int]] stop_reasons: Optional[List[str]] rollout_metrics: Optional[Dict[str, Any]] ``` We expect - all list attributes should have the same length and be the same length as the input batch of prompts at dim=0 - non zero length lists - response_ids, loss masks, and rewards (if token level rewards) should be the same length - the sum of loss masks should be non-zero (logging a warning if it is not) verified gsm8k run still works: <img width="563" height="330" alt="image" src="https://github.com/user-attachments/assets/eeefebcb-d5fc-486d-b906-f4344b1e2779" /> --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * [Trainer] GSPO support (NovaSky-AI#120) This PR adds support for [Group Sequence Policy Optimization (GSPO)](https://arxiv.org/abs/2507.18071), the hotness du jour from Alibaba Qwen. The implementation in this PR is loosely based on [this one](huggingface/trl#3775) from TRL. It adds an `importance_sampling_level` config option which can be `token` (PPO/GRPO) or `sequence` (GSPO). I ran a short/small GSM8k run with Qwen2.5-0.5B and the loss curves look okay: <img width="314" height="240" alt="image" src="https://github.com/user-attachments/assets/f52d7c64-416c-4419-aa96-4a03c9048007" /> However, I had to hack a few things to get this to run on Datadog's cloud infra (including changing some dependency versions) so I'd encourage one of the maintainers to reproduce these results locally before merging. * [SkyAgent] Add initial docs (NovaSky-AI#134) # What does this PR do? Adds initial documentation for SkyAgent. We are still actively cleaning this package up, but I thought initial documentation will be helpful for anyone who stumbles across this. The documentation folder is still in `skyrl-train`, and much of the docs also refer to "SkyRL" when they are really referring to "SkyRL-train", so to avoid any confusion, I have just added this as a simple page on the sidebar. We need to make the docs be mono-repo wide and structure it better but I'm leaving it for a future PR. --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> * [trainer/algorithm] Implement DAPO and Polaris style dynamic sampling + add DAPO docs + example (NovaSky-AI#130) # Overview This PR introduces filter (DAPO) and replace (Polaris/WebSailor) style dynamic sampling strategies. The dynamic sampling strategy can be configured as below: ```yaml # dynamic sampling parameters dynamic_sampling: type: null # filter (DAPO), replace (POLARIS/WebSailor), or null max_sample_batches: 30 # sample at most this many batches before stopping, -1 to sample forever min_replace_ratio: 0.3 # minimum proportion of good samples with which to replace bad samples (for replace strategy only) ``` This PR also adds a docs page describing how to enable all DAPO features, and adds an example GSM8K script where all these features are used. ## Minor Changes Some minor changes to make this dynamic sampling implementation clean: - the utils `Timer` class now updates the dict instead of overwriting in order to correctly track generation time w/ dynamic sampling, which means we need to make sure to reset `all_timings` in any trainer - The use of `self.weights_manager` is a little tricky for the dynamic sampling - introduced the the `ConditionalWeightsManager` to make the added code in the training loop as clean as possible ## Example runs <img width="413" height="264" alt="image" src="https://github.com/user-attachments/assets/072f716a-3632-42bb-a5f7-5f9d6064bd93" /> Generation time for dapo style filtering increases as the training run goes on, while it is stable for polaris and the baseline. <img width="419" height="265" alt="image" src="https://github.com/user-attachments/assets/887df550-e4b9-4623-b578-b4809a9f403f" /> We can see that the training pass @ n metric is 1 for both polaris and dapo style filtering as expected. <img width="421" height="259" alt="image" src="https://github.com/user-attachments/assets/bb63af77-1fbb-4d89-9216-b028f1551ea7" /> For GSM8k + Qwen 1.5B, the sampling strategy (as well as the full DAPO run) results in minimal gains - need larger models/harder dataset to test more fully DAPO sampling Example Run: ```bash (skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.439 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:13.737 | INFO | skyrl_train.weights_manager:__enter__:76 - Started: 'sync_weights_to_inference_engines' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO | skyrl_train.weights_manager:__enter__:76 - Finished: 'sync_weights_to_inference_engines', time cost: 2.66s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.401 | INFO | skyrl_train.weights_manager:__enter__:80 - Started: 'offload_policy_model_to_cpu' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.842 | INFO | skyrl_train.weights_manager:__enter__:80 - Finished: 'offload_policy_model_to_cpu', time cost: 0.44s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:16.888 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:13 [executor_base.py:227] It took 0.243244 seconds to wake up tags ['weights']. [repeated 4x across cluster] (AsyncVLLMInferenceEngine pid=223854) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.040547 seconds to wake up tags ['kv_cache']. (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:16 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster] (AsyncVLLMInferenceEngine pid=223855) INFO 08-04 23:13:16 [executor_base.py:227] It took 0.041721 seconds to wake up tags ['kv_cache']. (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.378 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.49s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 460 < 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 1, continue sampling... (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ================================================== (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.395 | INFO | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 20.96s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.407 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:34.445 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.014 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 17.57s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:433 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:434 - Dynamic sampling: 941 < 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:435 - Resample batch 2, continue sampling... (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.029 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:436 - ================================================== (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.030 | INFO | skyrl_train.trainer:train:245 - Finished: 'step', time cost: 17.62s (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.033 | INFO | skyrl_train.trainer:train:245 - Started: 'step' (skyrl_entrypoint pid=222117) 2025-08-04 23:13:52.074 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.380 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 16.31s (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:439 - ============= Dynamic sampling filter ============= (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.396 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:440 - Dynamic sampling: collected 1467 >= 1024 prompts (skyrl_entrypoint pid=222117) 2025-08-04 23:14:08.397 | INFO | skyrl_train.utils.trainer_utils:handle_filter_sampling:443 - ================================================== (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [gpu_worker.py:98] Sleep mode freed 61.88 GiB memory, 4.98 GiB memory is still in use. [repeated 3x across cluster] (AsyncVLLMInferenceEngine pid=223856) INFO 08-04 23:13:12 [executor_base.py:211] It took 1.264572 seconds to fall asleep. [repeated 3x across cluster] ``` Polaris Style example run: ```bash (skyrl_entrypoint pid=306764) 2025-08-05 00:30:01.648 | INFO | skyrl_train.trainer:train:261 - Started: 'generate' (AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:29:58 [executor_base.py:227] It took 0.240372 seconds to wake up tags ['weights']. [repeated 4x across cluster] (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.040980 seconds to wake up tags ['kv_cache']. (AsyncVLLMInferenceEngine pid=308521) INFO 08-05 00:30:00 [block_pool.py:316] Successfully reset prefix cache [repeated 7x across cluster] (AsyncVLLMInferenceEngine pid=308518) INFO 08-05 00:30:01 [executor_base.py:227] It took 0.041175 seconds to wake up tags ['kv_cache']. (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.663 | INFO | skyrl_train.trainer:train:261 - Finished: 'generate', time cost: 15.01s (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.679 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:316 - Replace sampling: 629 good UIDs out of 1024 total prompts (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:320 - ============= Dynamic sampling replace =========== (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:321 - Number of good prompts: 629 (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.680 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:322 - Number of bad prompts: 395 (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:352 - After replacement - Replaced 395 bad prompts (skyrl_entrypoint pid=306764) 2025-08-05 00:30:16.694 | INFO | skyrl_train.utils.trainer_utils:handle_replace_sampling:353 - ================================================== (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [gpu_worker.py:98] Sleep mode freed 62.14 GiB memory, 6.28 GiB memory is still in use. [repeated 3x across cluster] (AsyncVLLMInferenceEngine pid=308520) INFO 08-05 00:29:57 [executor_base.py:211] It took 1.331663 seconds to fall asleep. ``` ## Full DAPO example run From example script <img width="417" height="262" alt="image" src="https://github.com/user-attachments/assets/2592a06f-8b8a-4cf1-a29e-321bff819eb0" /> <img width="909" height="325" alt="image" src="https://github.com/user-attachments/assets/50922afd-1424-4183-9329-4f1f340287eb" /> --------- Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> * [algorithm] Support Dr. GRPO + refactor where policy/critic loss functions are set (NovaSky-AI#133) # Overview ## Dr GRPO Adds `loss_reduction`: `seq_mean_token_sum_norm ` option, and `grpo_norm_by_std` option to support Dr. GRPO So to run Dr. GRPO, set: ```yaml trainer: algorithm: grpo_norm_by_std: false loss_reduction: "seq_mean_token_sum_norm" ... ``` Example run: <img width="906" height="317" alt="image" src="https://github.com/user-attachments/assets/ce9db2ef-253e-45c8-adba-1ef8a270bbd9" /> Reward looks similar <img width="419" height="263" alt="image" src="https://github.com/user-attachments/assets/a4bc4d8c-f3c1-4bad-a497-0297dc30bc27" /> Magnitude of policy loss is lower as expected (since we are normalizing by a larger constant rather than taking the mean) ## Refactor where Critic/Policy Loss are set Changes ppo critic `ValueLoss` to just a function instead of a `nn.Module` for consistency with `policy_loss`, and adds new algorithm field to cfg that require evaluating field values in `utils::validate_cfg` (this runs before entrypoint code, allowing users to modify the cfg further by subclassing `BasePPOExp`) PPO example still running after this refactor: <img width="421" height="262" alt="image" src="https://github.com/user-attachments/assets/88985da3-1403-49c6-8cb5-f1434151fd9e" /> * [fix] move algorithm folder -> algorithms (NovaSky-AI#136) left the algorithm folder in NovaSky-AI#133, move it over * [Logging] Forward mlflow env vars to ray runtime env (NovaSky-AI#135) This PR forward the `MLFLOW_TRACKING_URI` and `MLFLOW_TRACKING_TOKEN` environment variable to the ray runtime env during its initialization. This will enable users to simply provide the above env vars at the driver and be able to use MLFlow for experiment tracking. * data folder * some stuff * updates --------- Signed-off-by: SumanthRH <sumanthrh99@gmail.com> Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com> Co-authored-by: Eric Tang <46737979+erictang000@users.noreply.github.com> Co-authored-by: Tyler Griggs <131809874+tyler-griggs@users.noreply.github.com> Co-authored-by: Shu Liu <lshu@berkeley.edu> Co-authored-by: Ben Cohen <ben.cohen@datadoghq.com> Co-authored-by: Shiyi Cao <shicao@berkeley.edu> Co-authored-by: Dacheng Li <dacheng177@berkeley.edu> Co-authored-by: Etienne Brodu <etn@etnbrd.com>
# Overview
Adds a `validate_generation_output` function in `trainer_utils.py` with
more robust validation of generation output format. Specifically, given
```
class GeneratorOutput(TypedDict):
prompt_token_ids: List[List[int]]
response_ids: List[List[int]]
rewards: Union[List[float], List[List[float]]]
loss_masks: List[List[int]]
stop_reasons: Optional[List[str]]
rollout_metrics: Optional[Dict[str, Any]]
```
We expect
- all list attributes should have the same length and be the same length
as the input batch of prompts at dim=0
- non zero length lists
- response_ids, loss masks, and rewards (if token level rewards) should
be the same length
- the sum of loss masks should be non-zero (logging a warning if it is
not)
verified gsm8k run still works:
<img width="563" height="330" alt="image"
src="https://github.com/user-attachments/assets/eeefebcb-d5fc-486d-b906-f4344b1e2779"
/>
---------
Co-authored-by: Sumanth R Hegde <39546518+SumanthRH@users.noreply.github.com>
Overview
Adds a
validate_generation_outputfunction intrainer_utils.pywith more robust validation of generation output format. Specifically, givenWe expect
verified gsm8k run still works:
