Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Time varying prototype #82

Draft
wants to merge 22 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 121 additions & 18 deletions docs/notebooks/introduction.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "013dbcb4",
"metadata": {},
"outputs": [],
Expand All @@ -45,7 +45,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"id": "2601dd00-7bd2-49d5-9bdf-a84205872890",
"metadata": {},
"outputs": [],
Expand All @@ -72,15 +72,15 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"id": "d7a98ea2-100f-43ef-8c45-c786ddcd313e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CUDA-enabled GPU/TPU is available.\n"
"No CUDA-enabled GPU found, using CPU.\n"
]
}
],
Expand Down Expand Up @@ -108,7 +108,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 4,
"id": "1df49737-dc02-4d6b-acd7-d03b79f18a29",
"metadata": {
"scrolled": true
Expand Down Expand Up @@ -226,7 +226,7 @@
"4 no 73 Post 35 II 1 26 65 772 1"
]
},
"execution_count": 5,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
Expand Down Expand Up @@ -271,7 +271,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 5,
"id": "7a5fd9ef-2643-46b7-9c98-05ff919026ea",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -400,7 +400,7 @@
"4 0.0 1.0 0.0 "
]
},
"execution_count": 6,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
Expand All @@ -417,7 +417,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 6,
"id": "0f8b7f3b-fb2a-4d74-ac99-8f6390b2f5eb",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -447,7 +447,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 7,
"id": "326c03fc-91f1-493b-a9ba-820de17fb2f8",
"metadata": {},
"outputs": [],
Expand All @@ -466,18 +466,18 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 8,
"id": "570386fb-f0ea-4061-bae2-11b274e7f851",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x (shape) = torch.Size([128, 9])\n",
"x (shape) = torch.Size([32, 9])\n",
"num_features = 9\n",
"event = torch.Size([128])\n",
"time = torch.Size([128])\n"
"event = torch.Size([32])\n",
"time = torch.Size([32])\n"
]
}
],
Expand Down Expand Up @@ -518,7 +518,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 9,
"id": "9c2bd89a-c90a-4795-aab5-b5c21906a0de",
"metadata": {},
"outputs": [],
Expand All @@ -535,6 +535,109 @@
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7d97e65d",
"metadata": {},
"outputs": [],
"source": [
"# This is for testing the loss function\n",
"x_test, (test_event, test_time) = next(iter(dataloader_train))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5d102dad",
"metadata": {},
"outputs": [],
"source": [
"log_hz = cox_model(x_test)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "210e6755",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x_test torch.Size([32, 9])\n",
"events torch.Size([32])\n",
"times torch.Size([32])\n",
"\n",
"time_sorted torch.Size([32])\n",
"log_hz_sorted torch.Size([32, 1])\n",
"event_sorted torch.Size([32])\n",
"time_unique torch.Size([30])\n",
"------------------------------\n",
"covariates torch.Size([32, 9])\n",
"cov_inner torch.Size([32, 32])\n",
"log_nom_left torch.Size([1, 32])\n",
"bracket torch.Size([32, 9])\n",
"log_nom_right torch.Size([32, 32])\n",
"sum_nom torch.Size([1, 32])\n",
"log_denom torch.Size([1, 32])\n",
"last_bit torch.Size([1, 32])\n"
]
},
{
"data": {
"text/plain": [
"tensor([[-1.4683e+04, -2.9827e+03, -2.9461e+04, -4.0582e+04, -1.7949e+04,\n",
" -1.4714e+05, -1.4940e+03, -7.7085e+04, -5.3855e+04, -9.3090e+03,\n",
" -9.8543e+03, -1.8929e+05, -5.1617e+03, -4.4286e+03, -9.6604e+04,\n",
" -1.5469e+04, -2.7680e+04, -6.3136e+04, -1.2045e+05, -9.3347e+04,\n",
" -1.7911e+05, -1.3205e+05, -1.6203e+05, -3.0884e+04, -2.3050e+03,\n",
" -2.1324e+05, -1.7852e+06, -1.7429e+04, -2.9495e+05, -8.4400e+03,\n",
" -5.5583e+04, 1.2975e+05]], grad_fn=<DivBackward0>)"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print('x_test', x_test.shape)\n",
"print('events', test_event.shape)\n",
"print('times', test_time.shape)\n",
"\n",
"time_sorted, idx = torch.sort(time)\n",
"log_hz_sorted = log_hz[idx]\n",
"event_sorted = event[idx]\n",
"time_unique = torch.unique(time_sorted)\n",
"print('')\n",
"print(\"time_sorted\", time_sorted.shape)\n",
"print('log_hz_sorted', log_hz_sorted.shape)\n",
"print('event_sorted', event_sorted.shape)\n",
"print(\"time_unique\", time_unique.shape)\n",
"\n",
"print('-'*30)\n",
"cov_fake = torch.clone(x_test)\n",
"print('covariates', cov_fake.shape)\n",
"covariates_sorted = cov_fake[idx, :]\n",
"covariate_inner_product = torch.matmul(covariates_sorted, covariates_sorted.T)\n",
"print('cov_inner', covariate_inner_product.shape)\n",
"log_nominator_left = torch.matmul(log_hz_sorted.T, covariate_inner_product)\n",
"print('log_nom_left', log_nominator_left.shape)\n",
"bracket = torch.mul(log_hz_sorted, covariates_sorted)\n",
"print('bracket', bracket.shape)\n",
"log_nominator_right = torch.matmul(bracket, bracket.T)\n",
"print('log_nom_right', log_nominator_right.shape)\n",
"sum_nominator_right = torch.sum(log_nominator_right, dim=0).unsqueeze(0)\n",
"print('sum_nom', sum_nominator_right.shape)\n",
"log_denominator = torch.logcumsumexp(log_hz_sorted.flip(0), dim=0).flip(0).T\n",
"print('log_denom', log_denominator.shape)\n",
"last_bit = torch.div(log_nominator_left - sum_nominator_right, log_denominator)\n",
"print('last_bit', last_bit.shape)\n",
"last_bit\n"
]
},
{
"cell_type": "markdown",
"id": "97c90244",
Expand All @@ -545,7 +648,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 15,
"id": "d7889dc1-1cfa-424e-a586-481cbc789581",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -1446,7 +1549,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "torchsurv_env",
"display_name": "conda-env2",
"language": "python",
"name": "python3"
},
Expand All @@ -1460,7 +1563,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
"version": "3.10.15"
}
},
"nbformat": 4,
Expand Down
Loading
Loading