Skip to content
/ openvkl Public
forked from RenderKit/openvkl

Intel(R) Open Volume Kernel Library

License

Notifications You must be signed in to change notification settings

OQO/openvkl

 
 

Repository files navigation

Intel® Open Volume Kernel Library

This is release v0.10.0 of Intel® Open VKL. For changes and new features see the changelog. Visit http://www.openvkl.org for more information.

Overview

Intel® Open Volume Kernel Library (Intel® Open VKL) is a collection of high-performance volume computation kernels, developed at Intel. The target users of Open VKL are graphics application engineers who want to improve the performance of their volume rendering applications by leveraging Open VKL’s performance-optimized kernels, which include volume traversal and sampling functionality for a variety of volumetric data formats. The kernels are optimized for the latest Intel® processors with support for SSE, AVX, AVX2, and AVX-512 instructions. Open VKL is part of the Intel® oneAPI Rendering Toolkit and is released under the permissive Apache 2.0 license.

Open VKL provides a C API, and also supports applications written with the Intel® SPMD Program Compiler (ISPC) by also providing an ISPC interface to the core volume algorithms. This makes it possible to write a renderer in ISPC that automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-512 instructions. ISPC also supports runtime code selection, thus ISPC will select the best code path for your application.

In addition to the volume kernels, Open VKL provides tutorials and example renderers to demonstrate how to best use the Open VKL API.

Version History

Open VKL 0.10.0 (alpha)

  • Added new particle volume type supporting Gaussian radial basis functions
  • Introduced VKLSampler objects allowing configuration of sampling and gradient behavior
  • Added stream-wide sampling and gradient APIs
  • Introduced a new way to allocate iterators, giving the user more freedom in choosing allocation schemes and reducing iterator size
  • Added support for strided data arrays
  • Added gradient implementations for amr and vdb volumes
  • Hit iterator accuracy improvements for amr, structuredSpherical, unstructured, and vdb volumes
  • Up to 4x performance improvement for structuredRegular and structuredSpherical sampling for volumes in the 1-2GB range
  • Up to 2x performance improvement for structuredRegular interval iteration
  • Improved commit speed for unstructured volumes
  • Improved value range computation in vdb volumes
  • Improved isosurface shading in vklExamples
  • Improved parameter validation across all volume types
  • Aligned VKLHit[4,8,16] and VKLInterval[4,8,16] structs
  • Added hit epsilon to VKLHit[4,8,16]
  • Updated parameter names for vdb volumes
  • Renamed VKLVdbLeafFormat to VKLFormat
  • Fixed incorrect use of system-installed CMake in superbuild while building dependencies
  • Fixed various memory leaks
  • Fixed crashes which could occur in VdbVolume::cleanup() and vklShutdown()
  • Moved from ospcommon to rkcommon v1.4.1

Open VKL 0.9.0 (alpha)

  • Added support for VDB sparse structured volumes ("vdb" volume type)
  • Added vdb_util library to simplify instantiation of VDB volumes, and support loading of .vdb files using OpenVDB
  • Added VKLObserver and associated APIs, which may used by volume types to pass information back to the application
    • A LeafNodeAccess observer is provided for VDB volumes to support on-demand loading of leaf nodes
  • Structured regular volumes:
    • Up to 6x performance improvement for scalar iterator initialization
    • Up to 2x performance improvement for scalar iterator iteration
  • General improvements to the CMake Superbuild for building Open VKL and all associated dependencies
  • Allowing instantiation of ISPC driver for any supported SIMD width (in addition to the default automatically selected width)
  • Volume type names are now camelCase (legacy snake_case type names are deprecated), impacting structuredRegular and structuredSpherical volumes
  • Enabling flushDenormals driver mode by default
  • Aligning public vkl_vvec3f[4,8,16] and vkl_vrange1f[4,8,16] types
  • Added VKL_LOG_NONE log level
  • Fixed bug in vklExamples which could lead to improper rendering on macOS Catalina
  • Fixed bug in unstructured volume interval iterator which could lead to errors with some combinations of lane masks
  • Now providing binary releases for Linux, macOS, and Windows

Open VKL 0.8.0 (alpha)

  • Added support for structured volumes on spherical grids ("structured_spherical" volume type)
  • Structured regular volumes:
    • Up to 8x performance improvement for scalar (single-wide) sampling
    • Fixed hit iterator bug which could lead to isosurfacing artifacts
    • Renamed voxelData parameter to data
  • Unstructured volumes:
    • Up to 4x performance improvement for scalar (single-wide) sampling
    • Improved interval iterator implementation for more efficient space skipping and tighter value bounds on returned intervals
    • Now using Embree for BVH builds for faster build times / volume commits
    • Renamed vertex.value and cell.value parameters to vertex.data and cell.data, respectively
  • AMR volumes:
    • renamed block.cellWidth parameter to cellWidth, and clarified API documentation
  • Added vklGetValueRange() API for querying volume value ranges
  • Added new driver parameters, APIs, and environment variables allowing user control of log levels, log / error output redirection, number of threads, and other options
  • vklIterateHit[4,8,16]() and vklIterateInterval[4,8,16]() calls now only populate hit / interval data for active lanes
  • Changed VKLDataType enum values for better forward compatibility
  • ISPC-side hit and interval iterator objects must now be declared varying
  • More flexible ISA build configuration through OPENVKL_MAX_ISA and OPENVKL_ISA_* CMake build options
  • Minimum ospcommon version is now 1.1.0

Open VKL 0.7.0 (alpha)

  • Initial public alpha release, with support for structured, unstructured, and AMR volumes.

Support and Contact

Open VKL is under active development, and though we do our best to guarantee stable release versions a certain number of bugs, as-yet-missing features, inconsistencies, or any other issues are still possible. Should you find any such issues please report them immediately via Open VKL’s GitHub Issue Tracker (or, if you should happen to have a fix for it, you can also send us a pull request); you may also contact us via email at openvkl@googlegroups.com.

Join our mailing list to receive release announcements and major news regarding Open VKL.

Intel® Open VKL API

To access the Open VKL API you first need to include the Open VKL header. For C99 or C++:

#include <openvkl/openvkl.h>

For the Intel SPMD Program Compiler (ISPC):

#include <openvkl/openvkl.isph>

This documentation will discuss the C99/C++ API. The ISPC version has the same functionality and flavor. Looking at the headers, the vklTutorialISPC example, and this documentation should be enough to figure it out.

Initialization and shutdown

To use the API, one of the implemented backends must be loaded. Currently the only one that exists is the ISPC driver. ISPC in the name here just refers to the implementation language – it can also be used from the C99/C++ APIs. To load the module that implements the ISPC driver:

vklLoadModule("ispc_driver");

The driver then needs to be instantiated:

VKLDriver driver = vklNewDriver("ispc");

By default, the ISPC driver selects the maximum supported SIMD width (and associated ISA) for the system. Optionally, a specific width may be requested using the ispc_4, ispc_8, or ispc_16 driver names. Note that the system must support the given width (SSE4.1 for 4-wide, AVX for 8-wide, and AVX512 for 16-wide).

Once a driver is created, you can call

void vklDriverSetInt(VKLDriver, const char *name, int val);
void vklDriverSetString(VKLDriver, const char *name, const char *val);

to set parameters on the driver. The following parameters are understood by all drivers:

Type Name Description
int logLevel logging level; valid values are VKL_LOG_DEBUG, VKL_LOG_INFO, VKL_LOG_WARNING, VKL_LOG_ERROR and VKL_LOG_NONE
string logOutput convenience for setting where log messages go; valid values are cout, cerr and none
string errorOutput convenience for setting where error messages go; valid values are cout, cerr and none
int numThreads number of threads which Open VKL can use
int flushDenormals sets the Flush to Zero and Denormals are Zero mode of the MXCSR control and status register (default: 1); see Performance Recommendations section for details

Parameters shared by all drivers.

Once parameters are set, the driver must be committed with

vklCommitDriver(driver);

Finally, to use the newly committed driver, you must call

vklSetCurrentDriver(driver);

Users can change parameters on a driver after initialization. In this case the driver would need to be re-committed. If changes are made to the driver that is already set as the current driver, it does not need to be set as current again. The currently set driver can be retrieved at any time by calling

VKLDriver driver = vklGetCurrentDriver();

Open VKL provides vector-wide versions for several APIs. To determine the native vector width for the given driver, call:

int width = vklGetNativeSIMDWidth();

When the application is finished with Open VKL or shutting down, call the shutdown function:

vklShutdown();

Environment variables

The generic driver parameters can be overridden via environment variables for easy changes to Open VKL’s behavior without needing to change the application (variables are prefixed by convention with “OPENVKL_”):

Variable Description
OPENVKL_LOG_LEVEL logging level; valid values are debug, info, warning, error and none
OPENVKL_LOG_OUTPUT convenience for setting where log messages go; valid values are cout, cerr and none
OPENVKL_ERROR_OUTPUT convenience for setting where error messages go; valid values are cout, cerr and none
OPENVKL_THREADS number of threads which Open VKL can use
OPENVKL_FLUSH_DENORMALS sets the Flush to Zero and Denormals are Zero mode of the MXCSR control and status register (default: 1); see Performance Recommendations section for details

Environment variables understood by all drivers.

Note that these environment variables take precedence over values set through the vklDriverSet*() functions.

Error handling and log messages

The following errors are currently used by Open VKL:

Name Description
VKL_NO_ERROR no error occurred
VKL_UNKNOWN_ERROR an unknown error occurred
VKL_INVALID_ARGUMENT an invalid argument was specified
VKL_INVALID_OPERATION the operation is not allowed for the specified object
VKL_OUT_OF_MEMORY there is not enough memory to execute the command
VKL_UNSUPPORTED_CPU the CPU is not supported (minimum ISA is SSE4.1)

Possible error codes, i.e., valid named constants of type VKLError.

These error codes are either directly returned by some API functions, or are recorded to be later queried by the application via

VKLError vklDriverGetLastErrorCode(VKLDriver);

A more descriptive error message can be queried by calling

const char* vklDriverGetLastErrorMsg(VKLDriver);

Alternatively, the application can also register a callback function of type

typedef void (*VKLErrorFunc)(VKLError, const char* message);

via

void vklDriverSetErrorFunc(VKLDriver, VKLErrorFunc);

to get notified when errors occur. Applications may be interested in messages which Open VKL emits, whether for debugging or logging events. Applications can register a callback function of type

typedef void (*VKLLogFunc)(const char* message);

via

void vklDriverSetLogFunc(VKLDriver, VKLLogFunc);

which Open VKL will use to emit log messages. Applications can clear either callback by passing nullptr instead of an actual function pointer. By default, Open VKL uses cout and cerr to emit log and error messages, respectively. Note that in addition to setting the above callbacks, this behavior can be changed via the driver parameters and environment variables described previously.

Basic data types

Open VKL defines 3-component vectors of integer and vector types:

typedef struct
{
  int x, y, z;
} vkl_vec3i;

typedef struct
{
  float x, y, z;
} vkl_vec3f;

Vector versions of these are also defined in structure-of-array format for 4, 8, and 16 wide types.

  typedef struct
  {
    float x[WIDTH];
    float y[WIDTH];
    float z[WIDTH];
  } vkl_vvec3f##WIDTH;

  typedef struct
  {
    float lower[WIDTH], upper[WIDTH];
  } vkl_vrange1f##WIDTH;

1-D range and 3-D ranges are defined as ranges and boxes, with no vector versions:

typedef struct
{
  float lower, upper;
} vkl_range1f;

typedef struct
{
  vkl_vec3f lower, upper;
} vkl_box3f;

Object model

Objects in Open VKL are exposed to the APIs as handles with internal reference counting for lifetime determination. Objects are created with particular type’s vklNew... API entry point. For example, vklNewData and vklNewVolume.

In general, modifiable parameters to objects are modified using vklSet... functions based on the type of the parameter being set. The parameter name is passed as a string. Below are all variants of vklSet....

void vklSetBool(VKLObject object, const char *name, int b);
void vklSetFloat(VKLObject object, const char *name, float x);
void vklSetVec3f(VKLObject object, const char *name, float x, float y, float z);
void vklSetInt(VKLObject object, const char *name, int x);
void vklSetVec3i(VKLObject object, const char *name, int x, int y, int z);
void vklSetData(VKLObject object, const char *name, VKLData data);
void vklSetString(VKLObject object, const char *name, const char *s);
void vklSetVoidPtr(VKLObject object, const char *name, void *v);

The exception to this rule is the VKLValueSelector object (described in the iterators section below), which has object-specific set methods. The reason for this is to align the C99/C++ API with the ISPC API, which can’t use a parameter method due to language limitations.

After parameters have been set, vklCommit must be called on the object to make them take effect.

Open VKL uses reference counting to manage the lifetime of all objects. Therefore one cannot explicitly “delete” any object. Instead, one can indicate the application does not need or will not access the given object anymore by calling

void vklRelease(VKLObject);

This decreases the object’s reference count. If the count reaches 0 the object will automatically be deleted.

Managed data

Large data is passed to Open VKL via a VKLData handle created with vklNewData:

VKLData vklNewData(size_t numItems,
                   VKLDataType dataType,
                   const void *source,
                   VKLDataCreationFlags dataCreationFlags,
                   size_t byteStride);

Types accepted are listed in VKLDataType.h; basic types (UCHAR, INT, UINT, LONG, ULONG, FLOAT) exist as both scalar and chunked formats. The types accepted vary per volume at the moment; read the volume section below for specifics.

Data objects can be created as Open VKL owned (dataCreationFlags = VKL_DATA_DEFAULT), in which the library will make a copy of the data for its use, or shared (dataCreationFlags = VKL_DATA_SHARED_BUFFER), which will try to use the passed pointer for usage. The library is allowed to copy data when a volume is committed.

The distance between consecutive elements in source is given in bytes with byteStride. If the provided byteStride is zero, then it will be determined automatically as sizeof(type).

As with other object types, when data objects are no longer needed they should be released via vklRelease.

Observers

Volumes in Open VKL may provide observers to communicate data back to the application. Observers may be created with

VKLObserver vklNewObserver(VKLVolume volume,
                           const char *type);

The volume passed to vklNewObserver must already be committed. Valid observer type strings are defined by volume implementations (see section ‘Volume types’ below).

vklNewObserver returns NULL on failure.

To access the underlying data, an observer must first be mapped using

const void * vklMapObserver(VKLObserver observer);

If this fails, the function returns NULL. vklMapObserver may fail on observers that are already mapped. On success, the application may query the underlying type and the number of elements in the buffer using

VKLDataType vklGetObserverElementType(VKLObserver observer);
size_t vklGetObserverNumElements(VKLObserver observer);

On failure, these functions return VKL_UNKNOWN and 0, respectively. Possible data types are defined by the volume that provides the observer , as are the semantics of the observation. See section ‘Volume types’ for details.

The pointer returned by vklMapObserver may be cast to the type corresponding to the value returned by vklGetObserverElementType to access the observation. For example, if vklGetObserverElementType returns VKL_FLOAT, then the pointer returned by vklMapObserver may be cast to const float * to access up to vklGetObserverNumElements consecutive values of type float.

Once the application has finished processing the observation, it should unmap the observer using

void vklUnmapObserver(VKLObserver observer);

so that the observer may be mapped again.

When an observer is no longer needed, it should be released using vklRelease.

The observer API is not thread safe, and these functions should not be called concurrently on the same object.

Volume types

Open VKL currently supports structured volumes on regular and spherical grids; unstructured volumes with tetrahedral, wedge, pyramid, and hexaderal primitive types; adaptive mesh refinement (AMR) volumes; sparse VDB volumes; and particle volumes. These volumes are created with vklNewVolume with the appropriate type string.

In addition to the usual vklSet...() and vklCommit() APIs, the volume bounding box can be queried:

vkl_box3f vklGetBoundingBox(VKLVolume volume);

The value range of the volume can also be queried:

vkl_range1f vklGetValueRange(VKLVolume volume);

Structured Volumes

Structured volumes only need to store the values of the samples, because their addresses in memory can be easily computed from a 3D position. The dimensions for all structured volume types are in units of vertices, not cells. For example, a volume with dimensions ((x, y, z)) will have ((x-1, y-1, z-1)) cells in each dimension. Voxel data provided is assumed vertex-centered, so (xyz) values must be provided.

Structured Regular Volumes

A common type of structured volumes are regular grids, which are created by passing a type string of "structuredRegular" to vklNewVolume. The parameters understood by structured regular volumes are summarized in the table below.

Type Name Default Description
vec3i dimensions number of voxels in each dimension ((x, y, z))
data data VKLData object of voxel data, supported types are:
VKL_UCHAR
VKL_SHORT
VKL_USHORT
VKL_FLOAT
VKL_DOUBLE
vec3f gridOrigin ((0, 0, 0)) origin of the grid in world-space
vec3f gridSpacing ((1, 1, 1)) size of the grid cells in world-space

Configuration parameters for structured regular ("structuredRegular") volumes.

Structured Spherical Volumes

Structured spherical volumes are also supported, which are created by passing a type string of "structuredSpherical" to vklNewVolume. The grid dimensions and parameters are defined in terms of radial distance ((r)), inclination angle ((\theta)), and azimuthal angle ((\phi)), conforming with the ISO convention for spherical coordinate systems. The coordinate system and parameters understood by structured spherical volumes are summarized below.

[Structured spherical volume coordinate system: radial distance ((r)), inclination angle ((\theta)), and azimuthal angle ((\phi)).][imgStructuredSphericalCoords]

Type Name Default Description
vec3i dimensions number of voxels in each dimension ((r, \theta, \phi))
data data VKLData object of voxel data, supported types are:
VKL_UCHAR
VKL_SHORT
VKL_USHORT
VKL_FLOAT
VKL_DOUBLE
vec3f gridOrigin ((0, 0, 0)) origin of the grid in units of ((r, \theta, \phi)); angles in degrees
vec3f gridSpacing ((1, 1, 1)) size of the grid cells in units of ((r, \theta, \phi)); angles in degrees

Configuration parameters for structured spherical ("structuredSpherical") volumes.

These grid parameters support flexible specification of spheres, hemispheres, spherical shells, spherical wedges, and so forth. The grid extents (computed as ([gridOrigin, gridOrigin + (dimensions - 1) * gridSpacing])) however must be constrained such that:

  • (r \geq 0)
  • (0 \leq \theta \leq 180)
  • (0 \leq \phi \leq 360)

Adaptive Mesh Refinement (AMR) Volumes

Open VKL currently supports block-structured (Berger-Colella) AMR volumes. Volumes are specified as a list of blocks, which exist at levels of refinement in potentially overlapping regions. Blocks exist in a tree structure, with coarser refinement level blocks containing finer blocks. The cell width is equal for all blocks at the same refinement level, though blocks at a coarser level have a larger cell width than finer levels.

There can be any number of refinement levels and any number of blocks at any level of refinement. An AMR volume type is created by passing the type string "amr" to vklNewVolume.

Blocks are defined by three parameters: their bounds, the refinement level in which they reside, and the scalar data contained within each block.

Note that cell widths are defined per refinement level, not per block.

Type Name Default Description
VKLAMRMethod method VKL_AMR_CURRENT VKLAMRMethod sampling method. Supported methods are:
VKL_AMR_CURRENT
VKL_AMR_FINEST
VKL_AMR_OCTANT
float[] cellWidth [data] array of each level’s cell width
box3i[] block.bounds [data] array of each block’s bounds (in voxels)
int[] block.level [data] array of each block’s refinement level
VKLData[] block.data [data] array of each block’s VKLData object containing the actual scalar voxel data. Currently only VKL_FLOAT data is supported.
vec3f gridOrigin ((0, 0, 0)) origin of the grid in world-space
vec3f gridSpacing ((1, 1, 1)) size of the grid cells in world-space

Configuration parameters for AMR ("amr") volumes.

Note that the gridOrigin and gridSpacing parameters act just like the structured volume equivalent, but they only modify the root (coarsest level) of refinement.

Open VKL’s AMR implementation was designed to cover Berger-Colella [1] and Chombo [2] AMR data. The method parameter above determines the interpolation method used when sampling the volume.

  • VKL_AMR_CURRENT finds the finest refinement level at that cell and interpolates through this “current” level
  • VKL_AMR_FINEST will interpolate at the closest existing cell in the volume-wide finest refinement level regardless of the sample cell’s level
  • VKL_AMR_OCTANT interpolates through all available refinement levels at that cell. This method avoids discontinuities at refinement level boundaries at the cost of performance

Details and more information can be found in the publication for the implementation [3].

  1. M. J. Berger, and P. Colella. “Local adaptive mesh refinement for shock hydrodynamics.” Journal of Computational Physics 82.1 (1989): 64-84. DOI: 10.1016/0021-9991(89)90035-1
  2. M. Adams, P. Colella, D. T. Graves, J.N. Johnson, N.D. Keen, T. J. Ligocki. D. F. Martin. P.W. McCorquodale, D. Modiano. P.O. Schwartz, T.D. Sternberg and B. Van Straalen, Chombo Software Package for AMR Applications - Design Document, Lawrence Berkeley National Laboratory Technical Report LBNL-6616E.
  3. I. Wald, C. Brownlee, W. Usher, and A. Knoll. CPU volume rendering of adaptive mesh refinement data. SIGGRAPH Asia 2017 Symposium on Visualization on - SA ’17, 18(8), 1–8. DOI: 10.1145/3139295.3139305

Unstructured Volumes

Unstructured volumes can have their topology and geometry freely defined. Geometry can be composed of tetrahedral, hexahedral, wedge or pyramid cell types. The data format used is compatible with VTK and consists of multiple arrays: vertex positions and values, vertex indices, cell start indices, cell types, and cell values. An unstructured volume type is created by passing the type string "unstructured" to vklNewVolume.

Sampled cell values can be specified either per-vertex (vertex.data) or per-cell (cell.data). If both arrays are set, cell.data takes precedence.

Similar to a mesh, each cell is formed by a group of indices into the vertices. For each vertex, the corresponding (by array index) data value will be used for sampling when rendering, if specified. The index order for a tetrahedron is the same as VTK_TETRA: bottom triangle counterclockwise, then the top vertex.

For hexahedral cells, each hexahedron is formed by a group of eight indices into the vertices and data values. Vertex ordering is the same as VTK_HEXAHEDRON: four bottom vertices counterclockwise, then top four counterclockwise.

For wedge cells, each wedge is formed by a group of six indices into the vertices and data values. Vertex ordering is the same as VTK_WEDGE: three bottom vertices counterclockwise, then top three counterclockwise.

For pyramid cells, each cell is formed by a group of five indices into the vertices and data values. Vertex ordering is the same as VTK_PYRAMID: four bottom vertices counterclockwise, then the top vertex.

To maintain VTK data compatibility, the index array may be specified with cell sizes interleaved with vertex indices in the following format: (n, id_1, ..., id_n, m, id_1, ..., id_m). This alternative index array layout can be enabled through the indexPrefixed flag (in which case, the cell.type parameter should be omitted).

Type Name Default Description
vec3f[] vertex.position [data] array of vertex positions
float[] vertex.data [data] array of vertex data values to be sampled
uint32[] / uint64[] index [data] array of indices (into the vertex array(s)) that form cells
bool indexPrefixed false indicates that the index array is provided in a VTK-compatible format, where the indices of each cell are prefixed with the number of vertices
uint32[] / uint64[] cell.index [data] array of locations (into the index array), specifying the first index of each cell
float[] cell.data [data] array of cell data values to be sampled
uint8[] cell.type [data] array of cell types (VTK compatible). Supported types are:
VKL_TETRAHEDRON
VKL_HEXAHEDRON
VKL_WEDGE
VKL_PYRAMID
bool hexIterative false hexahedron interpolation method, defaults to fast non-iterative version which could have rendering inaccuracies may appear if hex is not parallelepiped
bool precomputedNormals false whether to accelerate by precomputing, at a cost of 12 bytes/face

Configuration parameters for unstructured ("unstructured") volumes.

VDB Volumes

VDB volumes implement a data structure that is very similar to the data structure outlined in Museth [1].

The data structure is a hierarchical regular grid at its core: Nodes are regular grids, and each grid cell may either store a constant value (this is called a tile), or child pointers.

Nodes in VDB trees are wide: Nodes on the first level have a resolution of 32^3 voxels by default, on the next level 16^3, and on the leaf level 8^3 voxels. All nodes on a given level have the same resolution. This makes it easy to find the node containing a coordinate using shift operations (cp. [1]).

VDB leaf nodes are implicit in Open VKL: they are stored as pointers to user-provided data.

[Structure of "vdb" volumes in the default configuration][imgVdbStructure]

VDB volumes interpret input data as constant cells (which are then potentially filtered). This is in contrast to structuredRegular volumes, which have a vertex-centered interpretation.

The VDB implementation in Open VKL follows the following goals:

  • Efficient data structure traversal on vector architectures.

  • Enable the use of industry-standard .vdb files created through the OpenVDB library.

  • Compatibility with OpenVDB on a leaf data level, so that .vdb files may be loaded with minimal overhead.

VDB volumes have the following parameters:

Type Name Default Description
int maxIteratorDepth 3 Do not descend further than to this depth during interval iteration. The maximum value is 3.
float[] indexToObject 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 An array of 12 values of type float that define the transformation from index space to object space. In index space, the grid is an axis-aligned regular grid, and leaf voxels have size (1,1,1). The first 9 values are interpreted as a row-major linear transformation matrix. The last 3 values are the translation of the grid origin.
uint32[] node.level For each input node, the level on which this node exists. Levels are counted from the root level (0) down. Input nodes may be on levels [1, VKL_VDB_NUM_LEVELS-1].
vec3i[] node.origin For each input node, the node origin index.
uint32[] node.format For each input node, the data format. Currently supported are VKL_FORMAT_TILE for tiles, and VKL_FORMAT_CONSTANT_ZYX for nodes that are dense regular grids, but temporally constant.
VKLData[] node.data Node data. Nodes with format VKL_FORMAT_TILE are expected to have single-entry arrays. Nodes with format VKL_FORMAT_CONSTANT_ZYX are expected to have arrays with vklVdbLevelNumVoxels(level[i]) entries. Only VKL_FLOAT data is currently supported.

Configuration parameters for VDB ("vdb") volumes.

The level, origin, format, and data parameters must have the same size, and there must be at least one valid node or commit() will fail.

The following additional parameters can be set both on vdb volumes and their sampler objects (sampler object parameters default to volume parameters).

Type Name Default Description
int filter VKL_FILTER_TRILINEAR The filter used for reconstructing the field. Use VKLFilter for named constants.
int gradientFilter filter The filter used for reconstructing the field during gradient computations. Use VKLFilter for named constants.
int maxSamplingDepth VKL_VDB_NUM_LEVELS-1 Do not descend further than to this depth during sampling.

Configuration parameters for VDB ("vdb") volumes and their sampler objects.

VDB volumes support the following observers:

Name Buffer Type Description
LeafNodeAccess uint32[] This observer returns an array with as many entries as input nodes were passed. If the input node i was accessed during traversal, then the ith entry in this array has a nonzero value. This can be used for on-demand loading of leaf nodes.

Observers supported by VDB ("vdb") volumes.

Major differences to OpenVDB

  • Open VKL implements sampling in ISPC, and can exploit wide SIMD architectures.

  • VDB volumes in Open VKL are read-only once committed, and designed for rendering only. Authoring or manipulating datasets is not in the scope of this implementation.

  • The only supported field type is VKL_FLOAT at this point. Other field types may be supported in the future.

  • The root level in Open VKL has a single node with resolution 64^3 (cp. [1]. OpenVDB uses a hash map, instead).

  • The tree topology can be configured at compile time, but this happens through the CMake option VKL_VDB_LOG_RESOLUTION. By default this is set to “6;5;4;3”, which means that there are four levels, the root node has a resolution of (263 = 64^3), first level nodes a resolution of (253 = 32^3), and so on.

Loading OpenVDB .vdb files

Files generated with OpenVDB can be loaded easily since Open VKL vdb volumes implement the same leaf data layout. This means that OpenVDB leaf data pointers can be passed to Open VKL using shared data buffers, avoiding copy operations.

An example of this can be found in vdb_util/include/openvkl/OpenVdbGrid.h, where the class OpenVdbFloatGrid encapsulates the necessary operations. This class is also accessible through the vklExamples application using the -file and -field command line arguments.

To use this example feature, compile Open VKL with OpenVDB_ROOT pointing to the OpenVDB prefix.

  1. Museth, K. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics 32(3), 2013. DOI: 10.1145/2487228.2487235

Particle Volumes

Particle volumes consist of a set of points in space. Each point has a position, a radius, and a weight typically associated with an attribute. A radial basis function defines the contribution of that particle. Currently, we use the Gaussian radial basis function,

phi(P) = w * exp( -0.5 * ((P - p) / r)^2 )

where P is the particle position, p is the sample position, r is the radius and w is the weight.

At each sample, the scalar field value is then computed as the sum of each radial basis function phi, for each particle that overlaps it.

The Open VKL implementation is similar to direct evaluation of samples in Reda et al.[2]. It uses an Embree-built BVH with a custom traversal, similar to the method in [1].

Type Name Default Description
vec3f[] particle.position [data] array of particle positions
float[] particle.radius [data] array of particle radii
float[] particle.weight null [data] (optional) array of particle weights, specifying the height of the kernel.
float radiusSupportFactor 3.0 The multipler of the particle radius required for support. Larger radii ensure smooth results at the cost of performance. In the Gaussian kernel, the the radius is one standard deviation (sigma), so a radiusSupportFactor of 3 corresponds to 3*sigma.
float clampMaxCumulativeValue 0 The maximum cumulative value possible, set by user. All cumulative values will be clamped to this, and further traversal (RBF summation) of particle contributions will halt when this value is reached. A value of zero or less turns this off.
bool estimateValueRanges true Enable heuristic estimation of value ranges which are used in internal acceleration structures for interval and hit iterators, as well as for determining the volume’s overall value range. When set to false, the user must specify clampMaxCumulativeValue, and all value ranges will be assumed [0, clampMaxCumulativeValue]. Disabling this may improve volume commit time, but will make interval and hit iteration less efficient.

Configuration parameters for particle ("particle") volumes.

  1. Knoll, A., Wald, I., Navratil, P., Bowen, A., Reda, K., Papka, M.E. and Gaither, K. (2014), RBF Volume Ray Casting on Multicore and Manycore CPUs. Computer Graphics Forum, 33: 71-80. doi:10.1111/cgf.12363

  2. K. Reda, A. Knoll, K. Nomura, M. E. Papka, A. E. Johnson and J. Leigh, “Visualizing large-scale atomistic simulations in ultra-resolution immersive environments,” 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), Atlanta, GA, 2013, pp. 59-65.

Sampler Objects

Computing the value of a volume at an object space coordinate is done using the sampling API, and sampler objects. Sampler objects can be created using

VKLSampler vklNewSampler(VKLVolume volume);

Sampler objects may then be parametrized with traversal parameters. Available parameters are defined by volumes, and are a subset of the volume parameters. As an example, filter can be set on both vdb volumes and their sampler objects. The volume parameter is used as the default for sampler objects. The sampler object parameter provides an override per ray. More detail on parameters can be found in the sections on volumes. Use vklCommit() to commit parameters to the sampler object.

Sampling

The scalar API just takes a volume and coordinate, and returns a float value. NaN is returned for probe points outside the volume.

float vklComputeSample(VKLSampler sampler, const vkl_vec3f *objectCoordinates);

Vector versions allow sampling at 4, 8, or 16 positions at once. Depending on the machine type and Open VKL driver implementation, these can give greater performance. An active lane mask valid is passed in as an array of integers; set 0 for lanes to be ignored, -1 for active lanes.

void vklComputeSample4(const int *valid,
                       VKLSampler sampler,
                       const vkl_vvec3f4 *objectCoordinates,
                       float *samples);

void vklComputeSample8(const int *valid,
                       VKLSampler sampler,
                       const vkl_vvec3f8 *objectCoordinates,
                       float *samples);

void vklComputeSample16(const int *valid,
                        VKLSampler sampler,
                        const vkl_vvec3f16 *objectCoordinates,
                        float *samples);

A stream version allows sampling an arbitrary number of positions at once. While the vector version requires coordinates to be provided in a structure-of-arrays layout, the stream version allows coordinates to be provided in an array-of-structures layout. Thus, the stream API can be used to avoid reformatting of data by the application. As with the vector versions, the stream API can give greater performance than the scalar API.

  void vklComputeSampleN(VKLSampler sampler,
                         unsigned int N,
                         const vkl_vec3f *objectCoordinates,
                         float *samples);

All of the above sampling APIs can be used, regardless of the driver’s native SIMD width.

Gradients

In a very similar API to vklComputeSample, vklComputeGradient queries the value gradient at an object space coordinate. Again, a scalar API, now returning a vec3f instead of a float. NaN values are returned for points outside the volume.

vkl_vec3f vklComputeGradient(VKLSampler sampler,
                             const vkl_vec3f *objectCoordinates);

Vector versions are also provided:

void vklComputeGradient4(const int *valid,
                         VKLSampler sampler,
                         const vkl_vvec3f4 *objectCoordinates,
                         vkl_vvec3f4 *gradients);

void vklComputeGradient8(const int *valid,
                         VKLSampler sampler,
                         const vkl_vvec3f8 *objectCoordinates,
                         vkl_vvec3f8 *gradients);

void vklComputeGradient16(const int *valid,
                          VKLSampler sampler,
                          const vkl_vvec3f16 *objectCoordinates,
                          vkl_vvec3f16 *gradients);

Finally, a stream version is provided:

void vklComputeGradientN(VKLSampler sampler,
                         unsigned int N,
                         const vkl_vec3f *objectCoordinates,
                         vkl_vec3f *gradients);

All of the above gradient APIs can be used, regardless of the driver’s native SIMD width.

Iterators

Open VKL has APIs to search for particular volume values along a ray. Queries can be for ranges of volume values (vklIterateInterval) or for particular values (vklIterateHit). The desired values are set in a VKLValueSelector, which needs to be created, filled in with values, and then committed.

VKLValueSelector vklNewValueSelector(VKLVolume volume);

void vklValueSelectorSetRanges(VKLValueSelector valueSelector,
                               size_t numRanges,
                               const vkl_range1f *ranges);

void vklValueSelectorSetValues(VKLValueSelector valueSelector,
                               size_t numValues,
                               const float *values);

To query an interval, a VKLIntervalIterator of scalar or vector width must be initialized with vklInitIntervalIterator.

VKLIntervalIterator vklInitIntervalIterator(VKLVolume volume,
                                            const vkl_vec3f *origin,
                                            const vkl_vec3f *direction,
                                            const vkl_range1f *tRange,
                                            VKLValueSelector valueSelector,
                                            void *buffer);

VKLIntervalIterator4 vklInitIntervalIterator4(const int *valid,
                                              VKLVolume volume,
                                              const vkl_vvec3f4 *origin,
                                              const vkl_vvec3f4 *direction,
                                              const vkl_vrange1f4 *tRange,
                                              VKLValueSelector valueSelector,
                                              void *buffer);

VKLIntervalIterator8 vklInitIntervalIterator8(const int *valid,
                                              VKLVolume volume,
                                              const vkl_vvec3f8 *origin,
                                              const vkl_vvec3f8 *direction,
                                              const vkl_vrange1f8 *tRange,
                                              VKLValueSelector valueSelector,
                                              void *buffer);

VKLIntervalIterator16 vklInitIntervalIterator16(const int *valid,
                                                VKLVolume volume,
                                                const vkl_vvec3f16 *origin,
                                                const vkl_vvec3f16 *direction,
                                                const vkl_vrange1f16 *tRange,
                                                VKLValueSelector valueSelector,
                                                void *buffer);

Open VKL places the iterator struct into a user-provided buffer, and the returned handle is essentially a pointer into this buffer. This means that the iterator handle must not be used after the buffer ceases to exist. Copying iterator buffers is currently not supported.

The required size, in bytes, of the buffer can be queried with

size_t vklGetIntervalIteratorSize(VKLVolume volume);

size_t vklGetIntervalIteratorSize4(VKLVolume volume);

size_t vklGetIntervalIteratorSize8(VKLVolume volume);

size_t vklGetIntervalIteratorSize16(VKLVolume volume);

The values these functions return depend on the volume type rather than the particular VKLVolume instance.

Open VKL also provides a conservative maximum size over all volume types as a preprocessor definition (VKL_MAX_INTERVAL_ITERATOR_SIZE). This is particularly useful for stack-based allocation in ISPC. Open VKL will attempt to detect the native vector width using TARGET_WIDTH, which is defined in recent versions of ISPC.

Intervals can then be processed by calling vklIterateInterval as long as the returned lane masks indicates that the iterator is still within the volume:

int vklIterateInterval(VKLIntervalIterator iterator,
                       VKLInterval *interval);

void vklIterateInterval4(const int *valid,
                         VKLIntervalIterator4 iterator,
                         VKLInterval4 *interval,
                         int *result);

void vklIterateInterval8(const int *valid,
                         VKLIntervalIterator8 iterator,
                         VKLInterval8 *interval,
                         int *result);

void vklIterateInterval16(const int *valid,
                          VKLIntervalIterator16 iterator,
                          VKLInterval16 *interval,
                          int *result);

The intervals returned have a t-value range, a value range, and a nominalDeltaT which is approximately the step size that should be used to walk through the interval, if desired. The number and length of intervals returned is volume type implementation dependent. There is currently no way of requesting a particular splitting.

typedef struct
{
  vkl_range1f tRange;
  vkl_range1f valueRange;
  float nominalDeltaT;
} VKLInterval;

typedef struct
{
  vkl_vrange1f4 tRange;
  vkl_vrange1f4 valueRange;
  float nominalDeltaT[4];
} VKLInterval4;

typedef struct
{
  vkl_vrange1f8 tRange;
  vkl_vrange1f8 valueRange;
  float nominalDeltaT[8];
} VKLInterval8;

typedef struct
{
  vkl_vrange1f16 tRange;
  vkl_vrange1f16 valueRange;
  float nominalDeltaT[16];
} VKLInterval16;

Querying for particular values is done using a VKLHitIterator in much the same fashion. This API could be used, for example, to find isosurfaces. Again, a user allocated buffer must be provided, and a VKLHitIterator of the desired width must be initialized:

VKLHitIterator vklInitHitIterator(VKLVolume volume,
                                  const vkl_vec3f *origin,
                                  const vkl_vec3f *direction,
                                  const vkl_range1f *tRange,
                                  VKLValueSelector valueSelector,
                                  void *buffer);

VKLHitIterator4 vklInitHitIterator4(const int *valid,
                         VKLVolume volume,
                         const vkl_vvec3f4 *origin,
                         const vkl_vvec3f4 *direction,
                         const vkl_vrange1f4 *tRange,
                         VKLValueSelector valueSelector,
                         void *buffer);

VKLHitIterator8 vklInitHitIterator8(const int *valid,
                         VKLVolume volume,
                         const vkl_vvec3f8 *origin,
                         const vkl_vvec3f8 *direction,
                         const vkl_vrange1f8 *tRange,
                         VKLValueSelector valueSelector,
                         void *buffer);

VKLHitIterator16 vklInitHitIterator16(const int *valid,
                          VKLVolume volume,
                          const vkl_vvec3f16 *origin,
                          const vkl_vvec3f16 *direction,
                          const vkl_vrange1f16 *tRange,
                          VKLValueSelector valueSelector,
                          void *buffer);

Buffer size can be queried with

size_t vklGetHitIteratorSize(VKLVolume volume);

size_t vklGetHitIteratorSize4(VKLVolume volume);

size_t vklGetHitIteratorSize8(VKLVolume volume);

size_t vklGetHitIteratorSize16(VKLVolume volume);

Open VKL also provides the macro VKL_MAX_HIT_ITERATOR_SIZE as a conservative estimate.

Hits are then queried by looping a call to vklIterateHit as long as the returned lane mask indicates that the iterator is still within the volume.

int vklIterateHit(VKLHitIterator iterator, VKLHit *hit);

void vklIterateHit4(const int *valid,
                    VKLHitIterator4 iterator,
                    VKLHit4 *hit,
                    int *result);

void vklIterateHit8(const int *valid,
                    VKLHitIterator8 iterator,
                    VKLHit8 *hit,
                    int *result);

void vklIterateHit16(const int *valid,
                     VKLHitIterator16 iterator,
                     VKLHit16 *hit,
                     int *result);

Returned hits consist of a t-value, a volume value (equal to one of the requested values specified in the value selector), and an epsilon value estimating the error in t:

typedef struct
{
  float t;
  float sample;
  float epsilon;
} VKLHit;

typedef struct
{
  float t[4];
  float sample[4];
  float epsilon[4];
} VKLHit4;

typedef struct
{
  float t[8];
  float sample[8];
  float epsilon[8];
} VKLHit8;

typedef struct
{
  float t[16];
  float sample[16];
  float epsilon[16];
} VKLHit16;

For both interval and hit iterators, only the vector-wide API for the native SIMD width (determined via vklGetNativeSIMDWidth can be called. The scalar versions are always valid. This restriction will likely be lifted in the future.

Performance Recommendations

MXCSR control and status register

It is strongly recommended to have the Flush to Zero and Denormals are Zero mode of the MXCSR control and status register enabled for each thread before calling the sampling, gradient, or interval API functions. Otherwise, under some circumstances special handling of denormalized floating point numbers can significantly reduce application and Open VKL performance. The driver parameter flushDenormals or environment variable OPENVKL_FLUSH_DENORMALS can be used to toggle this mode; by default it is enabled. Alternatively, when using Open VKL together with the Intel® Threading Building Blocks, it is sufficient to execute the following code at the beginning of the application main thread (before the creation of the tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each thread calling into Open VKL has the proper mode set.

Iterator Allocation

vklInitIntervalIterator and vklInitHitIterator expect a user allocated buffer. While this buffer can be allocated by any means, we expect iterators to be used in inner loops and advise against heap allocation in that case. Applications may provide high performance memory pools, but as a preferred alternative we recommend stack allocated buffers.

In C99, variable length arrays provide an easy way to achieve this:

const size_t bufferSize = vklGetIntervalIteratorSize(volume);
char buffer[bufferSize];

Note that the call to vklGetIntervalIteratorSize or vklGetHitIteratorSize should not appear in an inner loop as it is relatively costly. The return value depends only on the volume type and target architecture, and volume does not actually have to be committed.

In C++, variable length arrays are not part of the standard. Here, users may rely on alloca and similar functions:

#include <alloca.h>
const size_t bufferSize = vklGetIntervalIteratorSize(volume);
char *buffer = alloca(bufferSize);

Users should understand the implications of alloca. In particular, alloca does check available stack space and may result in stack overflow. buffer also becomes invalid at the end of the scope. As one consequence, it cannot be returned from a function. On Windows, _malloca is a safer option that performs additional error checking.

In ISPC, variable length or alloca do not exist. Applications may instead rely on the VKL_MAX_INTERVAL_ITERATOR_SIZE and VKL_MAX_HIT_ITERATOR_SIZE macros:

uniform unsigned int8 buffer[VKL_MAX_INTERVAL_ITERATOR_SIZE];

These values are majorants over all drivers and volume types. Note that Open VKL attempts to detect the target SIMD width using TARGET_WIDTH, returning smaller buffer sizes for narrow architectures. However, Open VKL may fall back to the largest buffer size over all targets.

Examples

Open VKL ships with simple tutorial applications demonstrating the basic usage of the API, as well as full renderers showing recommended usage.

Tutorials

Simple tutorials can be found in the examples/ directory. These are:

  • vklTutorial.c : usage of the C API
  • vklTutorialISPC.[cpp,ispc] : combined usage of the C and ISPC APIs

For quick reference, the contents of vklTutorial.c are shown below.

#include <openvkl/openvkl.h>
#include <stdio.h>

#if defined(_MSC_VER)
#include <malloc.h> // _malloca
#endif

void demoScalarAPI(VKLVolume volume)
{
  printf("demo of 1-wide API\n");

  VKLSampler sampler = vklNewSampler(volume);
  vklCommit(sampler);

  // bounding box
  vkl_box3f bbox = vklGetBoundingBox(volume);
  printf("\tbounding box\n");
  printf("\t\tlower = %f %f %f\n", bbox.lower.x, bbox.lower.y, bbox.lower.z);
  printf("\t\tupper = %f %f %f\n\n", bbox.upper.x, bbox.upper.y, bbox.upper.z);

  // value range
  vkl_range1f valueRange = vklGetValueRange(volume);
  printf("\tvalue range = (%f %f)\n\n", valueRange.lower, valueRange.upper);

  // sample, gradient
  vkl_vec3f coord = {1.f, 1.f, 1.f};
  float sample    = vklComputeSample(sampler, &coord);
  vkl_vec3f grad  = vklComputeGradient(sampler, &coord);
  printf("\tcoord = %f %f %f\n", coord.x, coord.y, coord.z);
  printf("\t\tsample = %f\n", sample);
  printf("\t\tgrad   = %f %f %f\n\n", grad.x, grad.y, grad.z);

  // value selector setup (note the commit at the end)
  vkl_range1f ranges[2]     = {{10, 20}, {50, 75}};
  int num_ranges            = 2;
  float values[2]           = {32, 96};
  int num_values            = 2;
  VKLValueSelector selector = vklNewValueSelector(volume);
  vklValueSelectorSetRanges(selector, num_ranges, ranges);
  vklValueSelectorSetValues(selector, num_values, values);
  vklCommit(selector);

  // ray definition for iterators
  vkl_vec3f rayOrigin    = {0, 1, 1};
  vkl_vec3f rayDirection = {1, 0, 0};
  vkl_range1f rayTRange  = {0, 200};
  printf("\trayOrigin = %f %f %f\n", rayOrigin.x, rayOrigin.y, rayOrigin.z);
  printf("\trayDirection = %f %f %f\n",
         rayDirection.x,
         rayDirection.y,
         rayDirection.z);
  printf("\trayTRange = %f %f\n", rayTRange.lower, rayTRange.upper);

  // interval iteration. This is scoped
  {
    // Note: buffer will cease to exist at the end of this scope.
#if defined(_MSC_VER)
    // MSVC does not support variable length arrays, but provides a
    // safer version of alloca.
    char *buffer = _malloca(vklGetIntervalIteratorSize(volume));
#else
    char buffer[vklGetIntervalIteratorSize(volume)];
#endif
    VKLIntervalIterator intervalIterator = vklInitIntervalIterator(
        volume, &rayOrigin, &rayDirection, &rayTRange, selector, buffer);

    printf("\n\tinterval iterator for value ranges {%f %f} {%f %f}\n",
           ranges[0].lower,
           ranges[0].upper,
           ranges[1].lower,
           ranges[1].upper);

    for (;;) {
      VKLInterval interval;
      int result = vklIterateInterval(intervalIterator, &interval);
      if (!result)
        break;
      printf(
          "\t\ttRange (%f %f)\n\t\tvalueRange (%f %f)\n\t\tnominalDeltaT "
          "%f\n\n",
          interval.tRange.lower,
          interval.tRange.upper,
          interval.valueRange.lower,
          interval.valueRange.upper,
          interval.nominalDeltaT);
    }
  }

  // hit iteration
  {
#if defined(_MSC_VER)
    // MSVC does not support variable length arrays, but provides a
    // safer version of alloca.
    char *buffer = _malloca(vklGetHitIteratorSize(volume));
#else
    char buffer[vklGetHitIteratorSize(volume)];
#endif
    VKLHitIterator hitIterator = vklInitHitIterator(
        volume, &rayOrigin, &rayDirection, &rayTRange, selector, buffer);

    printf("\thit iterator for values %f %f\n", values[0], values[1]);

    for (;;) {
      VKLHit hit;
      int result = vklIterateHit(hitIterator, &hit);
      if (!result)
        break;
      printf("\t\tt %f\n\t\tsample %f\n\t\tepsilon %f\n\n",
             hit.t,
             hit.sample,
             hit.epsilon);
    }
  }

  vklRelease(selector);
  vklRelease(sampler);
}

void demoVectorAPI(VKLVolume volume)
{
  printf("demo of 4-wide API (8- and 16- follow the same pattern)\n");

  VKLSampler sampler = vklNewSampler(volume);
  vklCommit(sampler);

  vkl_vvec3f4 coord4;  // structure-of-array layout
  int valid[4];
  for (int i = 0; i < 4; i++) {
    coord4.x[i] = coord4.y[i] = coord4.z[i] = i;
    valid[i] = -1;  // valid mask: 0 = not valid, -1 = valid
  }

  float sample4[4];
  vkl_vvec3f4 grad4;
  vklComputeSample4(valid, sampler, &coord4, sample4);
  vklComputeGradient4(valid, sampler, &coord4, &grad4);

  for (int i = 0; i < 4; i++) {
    printf(
        "\tcoord[%d] = %f %f %f\n", i, coord4.x[i], coord4.y[i], coord4.z[i]);
    printf("\t\tsample[%d] = %f\n", i, sample4[i]);
    printf(
        "\t\tgrad[%d]   = %f %f %f\n", i, grad4.x[i], grad4.y[i], grad4.z[i]);
  }

  vklRelease(sampler);
}

void demoStreamAPI(VKLVolume volume)
{
  printf("demo of stream API\n");

  VKLSampler sampler = vklNewSampler(volume);
  vklCommit(sampler);

  // array-of-structure layout; arbitrary stream lengths are supported
  vkl_vec3f coord[5];

  for (int i = 0; i < 5; i++) {
    coord[i].x = coord[i].y = coord[i].z = i;
  }

  float sample[5];
  vkl_vec3f grad[5];
  vklComputeSampleN(sampler, 5, coord, sample);
  vklComputeGradientN(sampler, 5, coord, grad);

  for (int i = 0; i < 5; i++) {
    printf("\tcoord[%d] = %f %f %f\n", i, coord[i].x, coord[i].y, coord[i].z);
    printf("\t\tsample[%d] = %f\n", i, sample[i]);
    printf("\t\tgrad[%d]   = %f %f %f\n", i, grad[i].x, grad[i].y, grad[i].z);
  }

  vklRelease(sampler);
}

int main()
{
  vklLoadModule("ispc_driver");

  VKLDriver driver = vklNewDriver("ispc");
  vklCommitDriver(driver);
  vklSetCurrentDriver(driver);

  int dimensions[] = {128, 128, 128};

  const int numVoxels = dimensions[0] * dimensions[1] * dimensions[2];

  VKLVolume volume = vklNewVolume("structuredRegular");
  vklSetVec3i(
      volume, "dimensions", dimensions[0], dimensions[1], dimensions[2]);
  vklSetVec3f(volume, "gridOrigin", 0, 0, 0);
  vklSetVec3f(volume, "gridSpacing", 1, 1, 1);

  float *voxels = malloc(numVoxels * sizeof(float));

  if (!voxels) {
    printf("failed to allocate voxel memory!\n");
    return 1;
  }

  // x-grad sample volume
  for (int k = 0; k < dimensions[2]; k++)
    for (int j = 0; j < dimensions[1]; j++)
      for (int i = 0; i < dimensions[0]; i++)
        voxels[k * dimensions[0] * dimensions[1] + j * dimensions[2] + i] =
            (float)i;

  VKLData data = vklNewData(numVoxels, VKL_FLOAT, voxels, VKL_DATA_DEFAULT, 0);
  vklSetData(volume, "data", data);
  vklRelease(data);

  vklCommit(volume);

  demoScalarAPI(volume);
  demoVectorAPI(volume);
  demoStreamAPI(volume);

  vklRelease(volume);

  vklShutdown();

  free(voxels);

  return 0;
}

Interactive examples

Open VKL also ships with an interactive example application, vklExamples. This interactive viewer demonstrates multiple example renderers including a path tracer, isosurface renderer (using hit iterators), and ray marcher. The viewer UI supports switching between renderers interactively.

Each renderer has both a C++ and ISPC implementation showing recommended API usage. These implementations are available in the examples/interactive/renderers/ directory.

Building Open VKL from source

The latest Open VKL sources are always available at the Open VKL GitHub repository. The default master branch should always point to the latest tested bugfix release.

Prerequisites

Open VKL currently supports Linux, Mac OS X, and Windows. In addition, before you can build Open VKL you need the following prerequisites:

  • You can clone the latest Open VKL sources via:

    git clone https://github.com/openvkl/openvkl.git
    
  • To build Open VKL you need CMake, any form of C++11 compiler (we recommend using GCC, but also support Clang and MSVC), and standard Linux development tools. To build the examples, you should also have some version of OpenGL.

  • Additionally you require a copy of the Intel® SPMD Program Compiler (ISPC), version 1.12.0 or later. Please obtain a release of ISPC from the ISPC downloads page.

  • Open VKL depends on the Intel RenderKit common library, rkcommon. rkcommon is available at the rkcommon GitHub repository.

  • Open VKL depends on Embree, which is available at the Embree GitHub repository.

Depending on your Linux distribution you can install these dependencies using yum or apt-get. Some of these packages might already be installed or might have slightly different names.

CMake Superbuild

For convenience, Open VKL provides a CMake Superbuild script which will pull down Open VKL’s dependencies and build Open VKL itself. The result is an install directory, with each dependency in its own directory.

Run with:

mkdir build
cd build
cmake [<VKL_ROOT>/superbuild]
cmake --build .

The resulting install directory (or the one set with CMAKE_INSTALL_PREFIX) will have everything in it, with one subdirectory per dependency.

CMake options to note (all have sensible defaults):

  • CMAKE_INSTALL_PREFIX will be the root directory where everything gets installed.
  • BUILD_JOBS sets the number given to make -j for parallel builds.
  • INSTALL_IN_SEPARATE_DIRECTORIES toggles installation of all libraries in separate or the same directory.

For the full set of options, run ccmake [<VKL_ROOT>/superbuild].

Standard CMake build

Assuming the above prerequisites are all fulfilled, building Open VKL through CMake is easy:

  • Create a build directory, and go into it

    mkdir openvkl/build
    cd openvkl/build
    

    (We do recommend having separate build directories for different configurations such as release, debug, etc.).

  • The compiler CMake will use will default to whatever the CC and CXX environment variables point to. Should you want to specify a different compiler, run cmake manually while specifying the desired compiler. The default compiler on most linux machines is gcc, but it can be pointed to clang instead by executing the following:

    cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..
    

    CMake will now use Clang instead of GCC. If you are ok with using the default compiler on your system, then simply skip this step. Note that the compiler variables cannot be changed after the first cmake or ccmake run.

  • Open the CMake configuration dialog

    ccmake ..
    
  • Make sure to properly set build mode and enable the components you need, etc.; then type ’c’onfigure and ’g’enerate. When back on the command prompt, build it using

    make
    
  • You should now have libopenvkl.so as well as the tutorial / example applications.

Projects that make use of Open VKL

This page gives a brief (and incomplete) list of other projects that make use of Open VKL, as well as a set of related links to other projects and related information.

If you have a project that makes use of Open VKL and would like this to be listed here, please let us know.

  • Intel® OSPRay, a ray tracing based rendering engine for high-fidelity visualization

Projects that are closely related to Open VKL

About

Intel(R) Open Volume Kernel Library

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 85.6%
  • CMake 7.9%
  • C 4.1%
  • Shell 2.0%
  • Other 0.4%