Nonlinear Nonparametric Statistics
pip install NNS
From Beta R Version of 2021-12-13 (Version: 8.4-Beta, Date: 2021-12-13)
-
ANOVA
- NNS.ANOVA: TODO (deps: NNS.ANOVA.bin)
-
ARMA
- NNS.ARMA: TODO (deps: NNS.seas, ARMA.seas.weighting, NNS.meboot)
-
ARMA_optim:
- NNS.ARMA.optim: TODO (deps: NNS.ARMA)
-
Binary_ANOVA
- NNS.ANOVA.bin: OK
-
Boost
- NNS.boost: TODO (deps: NNS.caus, NNS.reg, NNS.stack)
-
Causal_Matrix
- NNS.caus.matrix: TODO (deps: NNS.caus)
-
Causation
- NNS.caus: TODO (deps: Uni.caus, NNS.caus.matrix)
-
Copula
- NNS.copula: OK
-
Dependence
- NNS.dep: TODO (deps: NNS.part, NNS.dep.matrix)
-
Dependence_matrix
- NNS.dep.matrix: TODO (deps: NNS.dep)
-
dy_d_wrt
- dy.d_: TODO (deps: NNS.reg)
-
dy_dx
- dy_dx: TODO (deps: NNS.dep, NNS.reg)
-
Internal Functions
- mode: TEST
- mode_class: TODO
- gravity: TEST
- gravity_class: TODO
- factor_2_dummy: TODO
- factor_2_dummy_FR: TODO
- generate_vectors: TODO
- ARMA_seas_weighting: TODO
- is.discrete: TODO
- lag_mtx: TODO
- NNS_meboot_part: TODO
- NNS_meboot_expand_sd: TODO
- alt_cbind: TEST (not in newest version, maybe R related)
- RP: TODO (not in newest version)
-
LPM UPM VaR
- LPM_VaR: OK
- UPM_VaR: OK
- used np.quantile instead of tdigest, and root_scalar instead of optimize
-
Multivariate_Regression
- NNS.M.reg: TODO (deps: NNS.part, NNS.dep, NNS::NNS.distance, NNS.copula, NNS.reg)
-
NNS_Distance
- NNS.distance: TODO (deps: dtw, Rfast)
-
NNS_meboot
- NNS.meboot: TODO (deps: NNS.dep, NNS.meboot.expand.sd)
-
NNS_term_matrix
- NNS.term.matrix: OK
-
NNS_VAR
- NNS.VAR: TODO (deps: NNS.reg, NNS.seas, NNS.ARMA.optim, NNS.ARMA, NNS.stack, NNS.dep, NNS.caus)
-
Normalization
- NNS.norm: TODO (deps: NNS.dep, Rfast)
-
Nowcast
- NNS.nowcast: TODO (deps: Quandl, NNS.VAR)
-
Numerical Differentiation
- NNS.diff: TODO (nodeps)
-
Partition_Map
- NNS.part: TODO (deps: internal functions: gravity_class, gravity, mode_class)
-
Partial Moments
- pd_fill_diagonal: OK (Internal use)
- LPM: OK Tested
- numba_LPM: Numba version (Internal use)
- LPM: Vectorized / pandas / numpy friendly
- UPM: OK Tested
- numba_UPM: Numba version (Internal use)
- UPM: Vectorized / pandas / numpy friendly
- Co_UPM: OK Tested
- _Co_UPM: Internal Use
- _vec_Co_UPM: numpy.vectorized
- Co_UPM: Vectorized / pandas / numpy friendly
- Co_LPM: OK Tested
- _Co_LPM: Internal Use
- _vec_Co_LPM: numpy.vectorized
- Co_LPM: Vectorized / pandas / numpy friendly
- D_LPM: OK Tested
- _D_LPM: Internal User
- _vec_D_LPM: numpy.vectorized
- D_LPM: Vectorized / pandas / numpy friendly
- D_UPM: OK Tested
- _D_UPM: Internal User
- _vec_D_UPM: numpy.vectorized
- D_UPM: Vectorized / pandas / numpy friendly
- PM_matrix: OK
- LPM_ratio: OK
- UPM_ratio: OK
- NNS_PDF: TODO (deps: d/dx approximation, density)
- NNS_CDF: TODO (deps: ecdf, density, matplotlib, NNS_reg)
-
Regression
- NNS.reg: TODO (deps: NNS.M.reg, NNS.dep, NNS.part, Uni.caus)
-
SD Efficient Set
- NNS_SD_efficient_set: OK (TODO: numba version?)
-
Seasonality_Test
- NNS.seas: TODO (nodeps)
-
Stack
- NNS.stack: TODO (deps: NNS.reg, NNS::NNS.distance)
-
Uni_Causation
- Uni.caus: TODO (deps: NNS.norm, NNS.dep)
-
FSD, SSD, TSD
- NNS_FSD: OK (TODO: numba version?)
- NNS_SSD: OK (TODO: numba version?)
- NNS_TSD: OK (TODO: numba version?)
-
Uni SD Routines
- NNS_FSD_uni: OK (TODO: numba version?)
- NNS_SSD_uni: OK (TODO: numba version?)
- NNS_TSD_uni: OK (TODO: numba version?)
-
Others Todos:
- Try to make names equal to R version
- R accept $ and . we will replace to underline _
- TODO: R export functions from modules
- Try to make names equal to R version