Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add some fused kernels #6635

Merged
merged 24 commits into from
Nov 24, 2021
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions oneflow/core/autograd/gradient_funcs/fused_scale_mask_softmax.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "oneflow/core/framework/op_expr_grad_function.h"
#include "oneflow/core/framework/op_builder.h"
#include "oneflow/core/framework/op_expr.h"
#include "oneflow/core/framework/op_expr_helper.h"
#include "oneflow/core/framework/op_interpreter/op_interpreter_util.h"
#include "oneflow/core/functional/functional.h"

namespace oneflow {
namespace one {

struct FusedScaleMaskSoftmaxInterState : public AutoGradCaptureState {
bool input_requires_grad = false;
float scale = 1.0;
};

class FusedScaleMaskSoftmax : public OpExprGradFunction<FusedScaleMaskSoftmaxInterState> {
public:
Maybe<void> Init(const OpExpr& op) override;
Maybe<void> Capture(FusedScaleMaskSoftmaxInterState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override;
Maybe<void> Apply(const FusedScaleMaskSoftmaxInterState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override;

private:
AttrMap base_attrs_;
};

Maybe<void> FusedScaleMaskSoftmax::Init(const OpExpr& op) {
const UserOpExpr* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op);
CHECK_NOTNULL_OR_RETURN(fw_op_expr);
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto());
return Maybe<void>::Ok();
}

Maybe<void> FusedScaleMaskSoftmax::Capture(FusedScaleMaskSoftmaxInterState* ctx,
const TensorTuple& inputs, const TensorTuple& outputs,
const AttrMap& attrs) const {
CHECK_EQ_OR_RETURN(inputs.size(), 2); // input, mask
ctx->input_requires_grad = inputs.at(0)->requires_grad();

if (!ctx->input_requires_grad) { return Maybe<void>::Ok(); }
ComposedAttrMap composed_attrs(attrs, base_attrs_);
ctx->scale = JUST(composed_attrs.GetAttr<float>("scale_value"));

ctx->SaveTensorForBackward(inputs.at(1)); // save mask
ctx->SaveTensorForBackward(outputs.at(0)); // save y, ie. softmax result
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

同上

return Maybe<void>::Ok();
}

Maybe<void> FusedScaleMaskSoftmax::Apply(const FusedScaleMaskSoftmaxInterState* ctx,
const TensorTuple& out_grads, TensorTuple* in_grads) const {
if (!ctx->input_requires_grad) { return Maybe<void>::Ok(); }

CHECK_EQ_OR_RETURN(out_grads.size(), 1); // dy
in_grads->resize(2); // input, mask

const std::shared_ptr<oneflow::one::Tensor>& mask = ctx->SavedTensors().at(0);
const std::shared_ptr<oneflow::one::Tensor>& y = ctx->SavedTensors().at(1);
const std::shared_ptr<oneflow::one::Tensor>& fused_scale_mask_softmax_grad =
JUST(functional::FusedScaleMaskSoftmaxGrad(y, out_grads.at(0), mask, ctx->scale));

in_grads->at(0) = fused_scale_mask_softmax_grad;
return Maybe<void>::Ok();
}

REGISTER_OP_EXPR_GRAD_FUNCTION("fused_scale_mask_softmax", FusedScaleMaskSoftmax);

} // namespace one
} // namespace oneflow
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
/*
Copyright 2020 The OneFlow Authors. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

#include "oneflow/core/framework/op_expr_grad_function.h"
#include "oneflow/core/framework/op_builder.h"
#include "oneflow/core/framework/op_expr.h"
#include "oneflow/core/framework/op_expr_helper.h"
#include "oneflow/core/framework/op_interpreter/op_interpreter_util.h"
#include "oneflow/core/functional/functional.h"

namespace oneflow {
namespace one {

struct FusedScaleMaskSoftmaxDropoutInterState : public AutoGradCaptureState {
bool input_requires_grad = true;
float scale = 1.0;
float dropout_scale = 1.0;
};

class FusedScaleMaskSoftmaxDropout : public OpExprGradFunction<FusedScaleMaskSoftmaxDropoutInterState> {
public:
Maybe<void> Init(const OpExpr& op) override;
Maybe<void> Capture(FusedScaleMaskSoftmaxDropoutInterState* ctx, const TensorTuple& inputs,
const TensorTuple& outputs, const AttrMap& attrs) const override;
Maybe<void> Apply(const FusedScaleMaskSoftmaxDropoutInterState* ctx, const TensorTuple& out_grads,
TensorTuple* in_grads) const override;

private:
AttrMap base_attrs_;
};

Maybe<void> FusedScaleMaskSoftmaxDropout::Init(const OpExpr& op) {
const UserOpExpr* fw_op_expr = dynamic_cast<const UserOpExpr*>(&op);
CHECK_NOTNULL_OR_RETURN(fw_op_expr);
base_attrs_ = MakeAttrMapFromUserOpConf(fw_op_expr->proto());
return Maybe<void>::Ok();
}

Maybe<void> FusedScaleMaskSoftmaxDropout::Capture(FusedScaleMaskSoftmaxDropoutInterState* ctx,
const TensorTuple& inputs, const TensorTuple& outputs,
const AttrMap& attrs) const {
CHECK_EQ_OR_RETURN(inputs.size(), 3); // input, mask, dropout_mask
ctx->input_requires_grad = inputs.at(0)->requires_grad();

if (!ctx->input_requires_grad) { return Maybe<void>::Ok(); }
ComposedAttrMap composed_attrs(attrs, base_attrs_);
ctx->scale = JUST(composed_attrs.GetAttr<float>("scale_value"));
ctx->dropout_scale = JUST(composed_attrs.GetAttr<float>("dropout_scale_value"));

ctx->SaveTensorForBackward(inputs.at(1)); // mask
ctx->SaveTensorForBackward(inputs.at(2)); // dropout_mask
ctx->SaveTensorForBackward(outputs.at(1)); // softmax_y
return Maybe<void>::Ok();
}

Maybe<void> FusedScaleMaskSoftmaxDropout::Apply(const FusedScaleMaskSoftmaxDropoutInterState* ctx,
const TensorTuple& out_grads, TensorTuple* in_grads) const {
CHECK_EQ_OR_RETURN(out_grads.size(), 2); // dy, d_softmax_y
if (!ctx->input_requires_grad) { return Maybe<void>::Ok(); }
in_grads->resize(3); // input, mask, dropout_mask

const std::shared_ptr<oneflow::one::Tensor>& mask = ctx->SavedTensors().at(0);
const std::shared_ptr<oneflow::one::Tensor>& dropout_mask = ctx->SavedTensors().at(1);
const std::shared_ptr<oneflow::one::Tensor>& softmax_y = ctx->SavedTensors().at(2);
const std::shared_ptr<oneflow::one::Tensor>& input_grad =
JUST(functional::FusedScaleMaskSoftmaxDropoutGrad(softmax_y, out_grads.at(0),
dropout_mask, mask, ctx->scale, ctx->dropout_scale));

in_grads->at(0) = input_grad;
return Maybe<void>::Ok();
}

REGISTER_OP_EXPR_GRAD_FUNCTION("fused_scale_mask_softmax_dropout", FusedScaleMaskSoftmaxDropout);

} // namespace one
} // namespace oneflow
16 changes: 16 additions & 0 deletions oneflow/core/functional/functional_api.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -1487,6 +1487,22 @@
signature: "Tensor (Tensor a, Tensor b, *, Float p=0.5, Int32 axis, Generator generator=None) => FusedBiasAddDropout"
bind_python: True

- name: "fused_scale_mask_softmax"
signature: "Tensor (Tensor x, Tensor mask, *, Float fill_value=0.0, Float scale=1.0) => FusedScaleMaskSoftmax"
bind_python: True

- name: "fused_scale_mask_softmax_grad"
signature: "Tensor (Tensor y, Tensor dy, Tensor mask, Float scale=1.0) => FusedScaleMaskSoftmaxGrad"
bind_python: False

- name: "fused_scale_mask_softmax_dropout"
signature: "TensorTuple (Tensor x, Tensor mask, *, Float fill_value=0.0, Float scale=1.0, Float p=0.5, Bool training=True, Generator generator=None) => FusedScaleMaskSoftmaxDropout"
bind_python: True

- name: "fused_scale_mask_softmax_dropout_grad"
signature: "Tensor (Tensor softmax_y, Tensor dy, Tensor dropout_mask, Tensor mask, Float scale=1.0, Float dropout_scale=1.0) => FusedScaleMaskSoftmaxDropoutGrad"
bind_python: False

- name: "fused_scale_tril_softmax_mask_scale"
signature: "TensorTuple (Tensor a, *, Float p=0.5, Int64 diagonal, Float tril_scale_value, Generator generator=None) => FusedScaleTrilSoftmaxMaskScale"
bind_python: True
Expand Down
64 changes: 64 additions & 0 deletions oneflow/core/functional/impl/nn_functor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1886,6 +1886,68 @@ class FusedScaleTrilFunctor {
std::shared_ptr<OpExpr> op_;
};

class FusedScaleMaskSoftmaxFunctor {
public:
FusedScaleMaskSoftmaxFunctor() {
op_ = CHECK_JUST(one::OpBuilder("fused_scale_mask_softmax")
.Input("x")
.Input("mask")
.Output("y")
.Build());
}
Maybe<Tensor> operator()(const std::shared_ptr<one::Tensor>& x, const std::shared_ptr<one::Tensor>& mask,
const float& fill_value, const float& scale) const {
MutableAttrMap attrs_;
JUST(attrs_.SetAttr<float>("scale_value", scale));
JUST(attrs_.SetAttr<float>("mask_fill_value", fill_value));
return OpInterpUtil::Dispatch<Tensor>(*op_, {x, mask}, attrs_);
}
private:
std::shared_ptr<OpExpr> op_;
};

class FusedScaleMaskSoftmaxDropoutFunctor {
public:
FusedScaleMaskSoftmaxDropoutFunctor() {
random_mask_like_op_ = CHECK_JUST(one::OpBuilder("random_mask_like").Input("like").Output("out").Build());
fused_scale_mask_softmax_dropout_op_ = CHECK_JUST(one::OpBuilder("fused_scale_mask_softmax_dropout")
.Input("x")
.Input("mask")
.Input("dropout_mask")
.Output("y")
.Output("softmax_y")
.Build());
}
Maybe<TensorTuple> operator()(const std::shared_ptr<one::Tensor>& x, const std::shared_ptr<one::Tensor>& mask,
const float& fill_value, const float& scale, const float& p, const bool& training,
const Optional<one::Generator>& generator) const {
float rate = p;
if (!training) rate = 0.0;
const auto gen = generator.value_or(JUST(one::DefaultAutoGenerator()));
MutableAttrMap random_mask_like_attrs;
JUST(random_mask_like_attrs.SetAttr<float>("rate", rate));
JUST(random_mask_like_attrs.SetAttr<int64_t>("seed", gen->current_seed()));
const auto& random_mask_like_state = std::make_shared<RandomMaskLikeKernelState>(gen);

const auto& dropout_mask = JUST(OpInterpUtil::Dispatch<Tensor>(
*random_mask_like_op_, {x},
OpExprInterpContext(random_mask_like_attrs, random_mask_like_state)));

float dropout_scale = 1.0;
if (rate != 1.0) { dropout_scale = 1.0 / (1.0 - rate); }
MutableAttrMap fused_scale_mask_softmax_dropout_attrs;
JUST(fused_scale_mask_softmax_dropout_attrs.SetAttr<float>("scale_value", scale));
JUST(fused_scale_mask_softmax_dropout_attrs.SetAttr<float>("mask_fill_value", fill_value));
JUST(fused_scale_mask_softmax_dropout_attrs.SetAttr<float>("dropout_scale_value", dropout_scale));

return OpInterpUtil::Dispatch<TensorTuple>(*fused_scale_mask_softmax_dropout_op_,
{x, mask, dropout_mask}, fused_scale_mask_softmax_dropout_attrs);
}
private:
std::shared_ptr<OpExpr> random_mask_like_op_;
std::shared_ptr<OpExpr> fused_scale_mask_softmax_dropout_op_;
};

class CtcGreedyDecoderFunctor {
public:
CtcGreedyDecoderFunctor() {
Expand Down Expand Up @@ -2008,6 +2070,8 @@ ONEFLOW_FUNCTION_LIBRARY(m) {
m.add_functor<impl::FusedBiasAddGeluFunctor>("FusedBiasAddGelu");
m.add_functor<impl::FusedBiasAddGeluGradFunctor>("FusedBiasAddGeluGrad");
m.add_functor<impl::FusedBiasAddDropoutFunctor>("FusedBiasAddDropout");
m.add_functor<impl::FusedScaleMaskSoftmaxFunctor>("FusedScaleMaskSoftmax");
m.add_functor<impl::FusedScaleMaskSoftmaxDropoutFunctor>("FusedScaleMaskSoftmaxDropout");
m.add_functor<impl::FusedScaleTrilSoftmaxMaskScaleFunctor>("FusedScaleTrilSoftmaxMaskScale");
m.add_functor<impl::FusedScaleTrilFunctor>("FusedScaleTril");
m.add_functor<impl::CtcGreedyDecoderFunctor>("CtcGreedyDecoder");
Expand Down
46 changes: 46 additions & 0 deletions oneflow/core/functional/impl/nn_grad_functor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -806,6 +806,50 @@ class FusedScaleTrilSoftmaxMaskScaleGradFunctor {
std::shared_ptr<OpExpr> fused_op_;
};

class FusedScaleMaskSoftmaxGradFunctor {
public:
FusedScaleMaskSoftmaxGradFunctor() {
op_ = CHECK_JUST(one::OpBuilder("fused_scale_mask_softmax_grad")
.Input("y")
.Input("dy")
.Input("mask")
.Output("dx")
.Build());
}
Maybe<Tensor> operator()(const std::shared_ptr<one::Tensor>& y, const std::shared_ptr<one::Tensor>& dy,
const std::shared_ptr<one::Tensor>& mask, const float& scale) const {
MutableAttrMap attrs_;
JUST(attrs_.SetAttr<float>("scale_value", scale));
return OpInterpUtil::Dispatch<Tensor>(*op_, {y, dy, mask}, attrs_);
}
private:
std::shared_ptr<OpExpr> op_;
};

class FusedScaleMaskSoftmaxDropoutGradFunctor {
public:
FusedScaleMaskSoftmaxDropoutGradFunctor() {
op_ = CHECK_JUST(one::OpBuilder("fused_scale_mask_softmax_dropout_grad")
.Input("softmax_y")
.Input("dy")
.Input("mask")
.Input("dropout_mask")
.Output("dx")
.Build());
}
Maybe<Tensor> operator()(const std::shared_ptr<one::Tensor>& softmax_y, const std::shared_ptr<one::Tensor>& dy,
const std::shared_ptr<one::Tensor>& dropout_mask, const std::shared_ptr<one::Tensor>& mask,
const float& scale, const float& dropout_scale) const {
MutableAttrMap attrs_;
JUST(attrs_.SetAttr<float>("scale_value", scale));
JUST(attrs_.SetAttr<float>("dropout_scale_value", dropout_scale));

return OpInterpUtil::Dispatch<Tensor>(*op_, {softmax_y, dy, dropout_mask, mask}, attrs_);
}
private:
std::shared_ptr<OpExpr> op_;
};

} // namespace impl

ONEFLOW_FUNCTION_LIBRARY(m) {
Expand Down Expand Up @@ -836,6 +880,8 @@ ONEFLOW_FUNCTION_LIBRARY(m) {
m.add_functor<impl::BroadcastMatmulGradBFunctor>("BroadcastMatmulGradB");
m.add_functor<impl::FusedScaleTrilSoftmaxMaskScaleGradFunctor>(
"FusedScaleTrilSoftmaxMaskScaleGrad");
m.add_functor<impl::FusedScaleMaskSoftmaxGradFunctor>("FusedScaleMaskSoftmaxGrad");
m.add_functor<impl::FusedScaleMaskSoftmaxDropoutGradFunctor>("FusedScaleMaskSoftmaxDropoutGrad");
};

} // namespace functional
Expand Down
2 changes: 2 additions & 0 deletions oneflow/core/job_rewriter/auto_mixed_precision_lists.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@ const AMPList& AutoMixedPrecisionLists::GrayList() {
"normalization_add_relu",
"sparse_softmax_cross_entropy",
"fused_tril_scale_softmax_mask_scale",
"fused_scale_mask_softmax_dropout",
"fused_scale_mask_softmax",
"fused_bias_add_gelu",
"fused_bias_add_mask_scale",
"acc"};
Expand Down
Loading